
 4.02a
July 2018

DesignWare DW_apb_ssi Databook

DW_apb_ssi – Product Code

http://synopsys.com
http://synopsys.com

2 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook

Copyright Notice and Proprietary Information
© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and
to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not
responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043

www.synopsys.com

https://www.synopsys.com/company/legal/trademarks-brands.html
www.synopsys.com
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 3SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Contents

Contents

Revision History . 7

Preface .13
 Organization .13
Related Documentation .14
Web Resources .14
Customer Support .14
Product Code .15

Chapter 1
Product Overview .17

1.1 DesignWare System Overview .17
1.2 General Product Description .19

1.2.1 DW_apb_ssi Block Diagram .19
1.3 Features .20
1.4 Standards Compliance .22
1.5 Verification Environment Overview .22
1.6 Licenses .22
1.7 Where To Go From Here .22

Chapter 2
Functional Description .23

2.1 DW_apb_ssi Overview .23
2.1.1 Example of Target Slave Selection Using Software .24

2.2 Clock Ratios .25
2.2.1 SSI_ENH_CLK_RATIO = 0 .26
2.2.2 SSI_ENH_CLK_RATIO = 1 .26
2.2.3 Frequency Ratio Summary .28

2.3 Transmit and Receive FIFO Buffers .29
2.4 32-Bit Frame Size Support .31
2.5 SSI Interrupts .31
2.6 Transfer Modes .32

2.6.1 Transmit and Receive .32
2.6.2 Transmit Only .32
2.6.3 Receive Only .32
2.6.4 EEPROM Read .33

2.7 Operation Modes .33
2.7.1 Serial Master Mode .33
2.7.2 Serial-Slave Mode .44

2.8 Partner Connection Interfaces .47

https://solvnet.synopsys.com
www.designware.com

4 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Contents DesignWare DW_apb_ssi Databook

2.8.1 Motorola Serial Peripheral Interface (SPI) .47
2.8.2 Texas Instruments Synchronous Serial Protocol (SSP) .53
2.8.3 National Semiconductor Microwire .54
2.8.4 Enhanced SPI Modes .64
2.8.5 Dual Data-Rate (DDR) Support in SPI Operation .71
2.8.6 Read Data Strobe Signal Support .74
2.8.7 XIP Mode Support in SPI Mode .74
2.8.8 Data Mask Support for SPI .76

2.9 DMA Controller Interface .76
2.9.1 Overview of Operation .78
2.9.2 Transmit Watermark Level and Transmit FIFO Underflow .80
2.9.3 Choosing the Transmit Watermark Level .81
2.9.4 Selecting DEST_MSIZE and Transmit FIFO Overflow .82
2.9.5 Receive Watermark Level and Receive FIFO Overflow .83
2.9.6 Choosing the Receive Watermark Level .83
2.9.7 Selecting SRC_MSIZE and Receive FIFO Underflow .83
2.9.8 Handshaking Interface Operation .84

2.10 APB Interface .87
2.10.1 Control and Status Register APB Access .87
2.10.2 Data Register APB Access .87
2.10.3 APB 3.0 Support .88
2.10.4 APB 4.0 Support .89

2.11 Reset Signals .89

Chapter 3
Parameter Descriptions .91

3.1 Top Level Parameters .92
3.2 SPI Parameters .98
3.3 Clocking Parameters . 100

Chapter 4
Signal Descriptions . 103

4.1 APB Slave Interface Signals . 105
4.2 Serial Interface Signals . 108
4.3 DMA Interface Signals . 112
4.4 Slave Interface Signals . 114
4.5 Master Interface Signals . 115
4.6 Interrupt Signals . 116

Chapter 5
Register Descriptions . 119

5.1 ssi_memory_map/ssi_address_block Registers . 122
5.1.1 CTRLR0 . 124
5.1.2 CTRLR1 . 134
5.1.3 SSIENR . 135
5.1.4 MWCR . 136
5.1.5 SER . 138
5.1.6 BAUDR . 140
5.1.7 TXFTLR . 142
5.1.8 RXFTLR . 144

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 5SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Contents

5.1.9 TXFLR . 146
5.1.10 RXFLR . 147
5.1.11 SR . 148
5.1.12 IMR . 151
5.1.13 ISR . 153
5.1.14 RISR . 156
5.1.15 TXOICR . 159
5.1.16 RXOICR . 160
5.1.17 RXUICR . 161
5.1.18 MSTICR . 162
5.1.19 ICR . 163
5.1.20 DMACR . 164
5.1.21 DMATDLR . 166
5.1.22 DMARDLR . 168
5.1.23 IDR . 169
5.1.24 SSI_VERSION_ID . 170
5.1.25 DRx (for x = 0; x <= 35) . 171
5.1.26 RX_SAMPLE_DLY . 173
5.1.27 SPI_CTRLR0 . 175
5.1.28 TXD_DRIVE_EDGE . 178
5.1.29 RSVD . 179

Chapter 6
Programming the DW_apb_ssi . 181

6.1 Programming Considerations . 181

Chapter 7
Verification . 185

7.1 Overview of Vera Tests . 185
7.1.1 APB Interface . 185
7.1.2 DW_apb_ssi as Master . 186
7.1.3 DW_apb_ssi as Slave . 186
7.1.4 DW_apb_ssi with DMA Interface . 186
7.1.5 Interrupts . 187

7.2 Overview of DW_apb_ssi Testbench . 188

Chapter 8
Integration Considerations . 189

8.1 Reading and Writing from an APB Slave . 189
8.1.1 Reading From Unused Locations .189
8.1.2 32-bit Bus System . 190
8.1.3 16-bit Bus System . 191
8.1.4 8-bit Bus System . 191

8.2 Write Timing Operation . 192
8.3 Read Timing Operation . 193
8.4 Accessing Top-level Constraints . 193
8.5 Coherency . 194

8.5.1 Writing Coherently . 194
8.5.2 Reading Coherently . 200

8.6 Performance . 204

https://solvnet.synopsys.com
www.designware.com

6 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Contents DesignWare DW_apb_ssi Databook

8.6.1 Power Consumption, Frequency, and Area Results . 204

Appendix A
Synchronizer Methods . 205

A.1 Synchronizers Used in DW_apb_ssi . 206
A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ssi) .207
A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller With Static Flags . 208

Appendix B
Application Notes . 211

B.1 Interfacing DW_apb_ssi and Atmel SPI Devices . 211
B.1.1 Synopsys SPI Operation . 211
B.1.2 Atmel SPI Operation . 212
B.1.3 Interoperability between DW_apb_ssi and Atmel Devices . 213

B.2 Interfacing DW_apb_ssi with Dual/Quad Capable Devices . 213
B.2.1 I/O Connection for A Device That Supports Dual/Quad SPI . 213

Chapter C
Internal Parameter Descriptions . 217

Appendix D
Glossary . 219

Index . 223

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 7

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

Revision History

This section tracks the significant documentation changes that occur from release-to-release and during a
release from version 3.11b onward.

Version Date Description

4.02a July 2018 Added:
■ Added support for configurable synchronization depth through the following

parameters: SSI_P2S_SYNC_DEPTH, and SSI_S2P_SYNC_DEPTH

Updated:

■ Version changed for 2018.07a release

■ “Performance” on page 204

■ “Parameter Descriptions”, “Signal Descriptions”, “Register Descriptions”,
“Internal Parameter Descriptions” are auto extracted with change bars from
the RTL

■ Updated Figure 2-50 and Figure 2-51

■ The minimum frequency of ssi_clk is corrected from six times to eight times
the maximum expected frequency of the bit-rate clock.

Added:

■ Added ssi_busy signal in debug interface

Removed:

■ Chapter 2, “Building and Verifying a Component or Subsystem” and added
the contents in the newly created user guide.

https://solvnet.synopsys.com
www.designware.com

8 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Revision History DesignWare DW_apb_ssi Databook

4.01a October 2016 ■ Version changed to 2016.10a

■ Updated “Features” on page 20

■ Added following parameters to “Parameter Descriptions” on page 91

- SSI_IO_MAP_EN
- SSI_HAS_DDR
- SSI_HAS_RXDS

■ Updated fields for “CTRLR0” and “SPI_CTRLR0” registers in “Register
Descriptions” on page 119.

■ Added register “TXD_DRIVE_EDGE” in “Register Descriptions” on page 119

■ Added the “Advanced I/O Mapping for Enhanced SPI Modes” on page 70
section

■ Added the “Dual Data-Rate (DDR) Support in SPI Operation” on page 71
section

■ Added “Read Data Strobe Signal Support” on page 74

■ Modified “Write Operation in Enhanced SPI Modes” on page 64 and “Read
Operation in Enhanced SPI Modes” on page 67

■ Added “XIP Mode Support in SPI Mode” on page 74

■ Added “APB 3.0 Support” on page 88

■ Added “APB 4.0 Support” on page 89

■ Added “Data Mask Support for SPI” on page 76

■ Added following parameters to “Parameter Descriptions” on page 91 for XIP
and APB 4.0 support:

- SSI_APBIF_TYPE
- SSI_APB3_ERR_RESP_EN
- SSI_XIP_EN

■ Added following signals in “Signal Descriptions” on page 103 for XIP
support:

- xip_en
- pready
- pslverr

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 9SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Revision History

■ Added following signals in “Signal Descriptions” on page 103 to support the
data mask feature:

- pstrb
- prpot

■ Removed “Running Leda on Generated Code with coreConsultant”, and
reference to Leda directory in Table 2-1

■ Removed “Running Leda on Generated Code with coreAssembler” section,
and reference to Leda directory in Table 2-4

■ Added an entry for the xprop directory in Table 2-1 and Table 2-4.

■ Added “Running VCS XPROP Analyzer”

■ Chapter 3, “Parameter Descriptions” and Chapter 5, “Register Descriptions”
auto-extracted from the RTL

■ Moved “Internal Parameter Descriptions” to Appendix

■ Updated Appendix A.3, “Synchronizer 2: Synchronous (Dual-clock) FIFO
Controller With Static Flags”

■ Moved Table 2-1 and Table 2-2 from Registers chapter to “Transmit and
Receive FIFO Buffers” on page 29

■ Moved Table 2-4 and Table 2-5 from Registers chapter to “DMA Controller
Interface” on page 76

4.00a June 2015 ■ Modified the Clock Ratios section and added the following sub-sections:

❑ “SSI_ENH_CLK_RATIO = 0” on page 26

❑ “SSI_ENH_CLK_RATIO = 1” on page 26

❑ “Frequency Ratio Summary” on page 28
■ Added the ““Enhanced SPI Modes” on page 64” section in the “Functional

Description” chapter

■ Added “Interfacing DW_apb_ssi with Dual/Quad Capable Devices” on
page 213 to support switching between standard and Dual/Quad modes of
operation

■ Added the “Running SpyGlass® Lint and SpyGlass® CDC”

■ Added the “Running SpyGlass on Generated Code with coreAssembler”

■ Added Chapter C, “Internal Parameter Descriptions”

■ Added Appendix A, “Synchronizer Methods”

■ Modified description for “Interrupt polarity”, and added description for “Serial
clock polarity” and “Serial clock phase”, under “Features” on page 20

■ Chapter 4, “Signal Descriptions” auto-extracted from the RTL

■ Updated area and power numbers in sections “Area” and “Power
Consumption”

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

10 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Revision History DesignWare DW_apb_ssi Databook

3.23a June 2014 ■ Enhancement to support 32-bit frame size:

- Added:
- “Frame Size Support” section
- SSI_MAX_XFER_SIZE parameter

- Updated:
- “Data Register APB Access” section
- CTRLR0 and DR register

■ Added “Performance” section in “Integration Considerations” chapter

■ Updated Registers chapter:

- Fixed typo in DR row of Memory Map Table 6-1
- Added more clarity on the Register reserved width
- Corrected the offset in the RX_SAMPLE_DLY register
- DCOL field description updated

■ Corrected External Input/Output Delay in Signald chapters

3.22b May 2013 ■ Added a section to describe Reset Signals

■ Updated the template.

3.22a Sep 2012 Added the product code on the cover and in Table 1-1

3.22a Mar 2012 ■ Clarified conditions for asserting and clearing dma_tx_single and
dma_rx_single signals

■ Added notes in Verification chapter clarifying that SSI master and slave
BFMs are not VMT VIP models

3.21b Nov 2011 Version change for 2011.11a release

3.21a Oct 2011 Version change for 2011.10a release

3.20a 15 Jun 2011 Modified ssi_sleep signal description

3.20a Jun 2011 ■ Updated system diagram in Figure 1-1

■ Enhanced “Related Documents” section in Preface

3.19a Apr 2011 Added material for new SSI_SCPH0_SSTOGGLE parameter

3.18a Jan 2011 Corrected descriptions of TXFTLR and RXFTLR registers

3.18a Dec 2010 Version change for 2010.12a release

3.17a Nov 2010 Corrected DW_ahb_dmac response in “Receive Watermark Level and Receive
FIFO Overflow” section

3.17a Oct 2010 Changes to clarify RTL enhancement for logic added to master state machine to
prevent txd output from toggling when only receiving data frame

3.16a Sep 2010 Corrected names of include files and vcs command used for simulation

3.15a Mar 2010 Added a programmable delay register used to sample incoming data

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 11SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Revision History

3.13a Dec 2009 Updated databook to new template for consistency with other IIP/VIP/PHY
databooks

3.12a Jul 2009 Corrected equations for avoiding underflow when programming a source burst
transaction

3.12a May 2009 Removed references to QuickStarts, as they are no longer supported

3.12a Apr 2009 Enhanced overview and Figure 5-B

3.12a Oct 2008 ■ Changed DR address offset from 0x60-0x15c to 0x60-0xfc

■ Version change for 2008.10a release

3.11c Jun 2008 Version change for 2008.06a release

3.11b Mar 2008 DR register offset changed to 0x60 - 0x15c; occupies sixteen 32-bit addresses

3.11b Jan 2008 ■ Updated to revised installation guide and consolidated release notes

■ Changed references of “Designware AMBA” to simply “DesignWare”

3.11b Jun 2007 Version change for 2007.06a release

 (Continued)

Version Date Description

https://solvnet.synopsys.com
www.designware.com

12 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Revision History DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 13SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Preface

Preface

This databook provides information that you need to interface the DesignWare Synchronous Serial Interface
(SSI), referred to as DW_apb_ssi throughout the remainder of this databook. This component conforms to
the AMBA Specification, Revision 2.0 from Arm®.

The information in this databook includes a functional description, signal and parameter descriptions, and a
memory map. Also provided are an overview of the component testbench, a description of the tests that are
run to verify the coreKit, and synthesis information for the coreKit.

 Organization
The chapters of this databook are organized as follows:

■ Chapter 1, “Product Overview” provides a system overview, a component block diagram, basic
features, and an overview of the verification environment.

■ Chapter 2, “Functional Description” describes the functional operation of the DW_apb_ssi.

■ Chapter 3, “Parameter Descriptions” identifies the configurable parameters supported by the
DW_apb_ssi.

■ Chapter 4, “Signal Descriptions” provides a list and description of the DW_apb_ssi signals.

■ Chapter 5, “Register Descriptions” describes the programmable registers of the DW_apb_ssi.

■ Chapter 6, “Programming the DW_apb_ssi” provides information needed to program the configured
DW_apb_ssi.

■ Chapter 7, “Verification” provides information on verifying the configured DW_apb_ssi.

■ Chapter 8, “Integration Considerations” includes information you need to integrate the configured
DW_apb_ssi into your design.

■ Appendix A, “Synchronizer Methods” documents the synchronizer methods (blocks of synchronizer
functionality) used in DW_apb_ssi to cross clock boundaries.

■ Appendix B, “Application Notes” provides getting started information that allows you to walk
through the process of using the DW_apb_ssi with Synopsys coreConsultant tool.

■ Appendix C, “Internal Parameter Descriptions” provides a list of internal parameter descriptions that
might be indirectly referenced in expressions in the Signals chapter.

■ Appendix D, “Glossary” provides a glossary of general terms.

http://www.arm.com/products/solutions/AMBA_Spec.html
https://solvnet.synopsys.com
www.designware.com

14 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Preface DesignWare DW_apb_ssi Databook

Related Documentation
■ Using DesignWare Library IP in coreAssembler – Contains information on getting started with using

DesignWare SIP components for AMBA 2 and AMBA 3 AXI components within coreTools

■ coreAssembler User Guide – Contains information on using coreAssembler

■ coreConsultant User Guide – Contains information on using coreConsultant

To see a complete listing of documentation within the DesignWare Synthesizable Components for AMBA 2,
see the Guide to Documentation for DesignWare Synthesizable Components for AMBA 2 and AMBA 3 AXI.

Web Resources
■ DesignWare IP product information: http://www.designware.com

■ Your custom DesignWare IP page: http://www.mydesignware.com

■ Documentation through SolvNet: http://solvnet.synopsys.com (Synopsys password required)

■ Synopsys Common Licensing (SCL): http://www.synopsys.com/keys

Customer Support
To obtain support for your product:

■ First, prepare the following debug information, if applicable:

❑ For environment setup problems or failures with configuration, simulation, or synthesis that
occur within coreConsultant or coreAssembler, use the following menu entry:

File > Build Debug Tar-file

Check all the boxes in the dialog box that apply to your issue. This menu entry gathers all the
Synopsys product data needed to begin debugging an issue and writes it to the file
<core tool startup directory>/debug.tar.gz.

❑ For simulation issues outside of coreConsultant or coreAssembler:

■ Create a waveforms file (such as VPD or VCD)
■ Identify the hierarchy path to the DesignWare instance
■ Identify the timestamp of any signals or locations in the waveforms that are not understood

■ Then, contact Support Center, with a description of your question and supplying the requested
information, using one of the following methods:

❑ For fastest response, use the SolvNet website. If you fill in your information as explained below,
your issue is automatically routed to a support engineer who is experienced with your product.
The Sub Product entry is critical for correct routing.

Go to http://solvnet.synopsys.com/EnterACall and click Open A Support Case to enter a call.
Provide the requested information, including:

■ Product: DesignWare Library IP
■ Sub Product: AMBA
■ Tool Version: <product version number>
■ Problem Type:

http://www.synopsys.com/dw/doc.php/doc/amba/latest/intro.pdf
http://solvnet.synopsys.com/EnterACall
http://www.mydesignware.com
http://solvnet.synopsys.com
http://www.synopsys.com/keys
http://www.designware.com/
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_tutorial.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 15SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Preface

■ Priority:
■ Title: DW_apb_ssi
■ Description: For simulation issues, include the timestamp of any signals or locations in

waveforms that are not understood

After creating the case, attach any debug files you created in the previous step.

❑ Or, send an e-mail message to support_center@synopsys.com (your email will be queued and
then, on a first-come, first-served basis, manually routed to the correct support engineer):

■ Include the Product name, Sub Product name, and Tool Version number in your e-mail (as
identified earlier) so it can be routed correctly.

■ For simulation issues, include the timestamp of any signals or locations in waveforms that are
not understood

■ Attach any debug files you created in the previous step.

❑ Or, telephone your local support center:

■ North America:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

■ All other countries:
https://www.synopsys.com/support/global-support-centers.html

Product Code
Table 1-1 lists all the components associated with the product code for DesignWare APB Advanced
Peripherals.

Table 1-1 DesignWare APB Advanced Peripherals – Product Code: 3772-0

Component Name Description

DW_apb_i2c A highly configurable, programmable master or slave i2c device with an APB slave interface

DW_apb_i2s A configurable master or slave device for the three-wire interface (I2S) for streaming stereo
audio between devices

DW_apb_ssi A configurable, programmable, full-duplex, master or slave synchronous serial interface

DW_apb_uart A programmable and configurable Universal Asynchronous Receiver/Transmitter (UART)
for the AMBA 2 APB bus

mailto:support_center@synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com
www.designware.com

16 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Preface DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 17SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Product Overview

1
Product Overview

The DW_apb_ssi is a programmable Synchronous Serial Interface (SSI) peripheral. This component is an
AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and is part of the family of DesignWare
Synthesizable Components.

1.1 DesignWare System Overview
The Synopsys DesignWare Synthesizable Components environment is a parameterizable bus system
containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB (Advanced
Peripheral Bus) components, and AMBA version 3.0-compliant AXI (Advanced eXtensible Interface)
components.

Figure 1-1 illustrates one example of this environment, including the AXI bus, the AHB bus, and the APB
bus. Included in this subsystem are synthesizable IP for AXI/AHB/APB peripherals, bus bridges, and an
AXI interconnect and AHB bus fabric. Also included are verification IP for AXI/AHB/APB master/slave
models and bus monitors. In order to display the databook for a DW_* component, click on the
corresponding component object in the illustration.

https://solvnet.synopsys.com
www.designware.com

18 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_ssi Databook

Figure 1-1 Example of DW_apb_ssi in a Complete System

apb_monitor_vmt

DW_ahb_icmDW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

Non-DW
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

Non-DW
Peripherals

DW_ahb_dmac

APB Slave
VIP

AHB

VIP
Master/Slave

Non-DW
Master

Master/Slave
Non-DW AXI

DW_axi_gs

axi_monitor_vmt

Synopsys

Non-DW
Slave

AXI

VIP
Master/Slave

…

ahb_monitor_vmt

DW_ahb_dmacDW_ahb_ictl

RAM
Memory ModelsDW_axi_x2h

DW_ahbDW_apb AHB/APB Bridge

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

DW_apb_i2c

DW_apb_i2s

DW_axi_gm

Non-DW
AHB Master

DW_axi_hmx

DW_ahbDW_ahb Arbitration,
Decode, & Mux

DW_memctl

DW_axi_x2p

DW_apb_uart DW_apb_i2c

DW_axi [2]Arbitration,
Decode, & Mux

DW_ahb [2]

DW_axi_x2x

DW_axiArbitration,
Decode, & Mux

DW_axi_rs

components
Non-DesignWare
AMBA IP

Non-DW
AXI Master

DW_axi_x2x

Non-DW
AXI Slave

DW_axi_x2x

https://www.synopsys.com/dw/doc.php/iip/DW_ahb_icm/latest/doc/DW_ahb_icm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_h2h/latest/doc/DW_ahb_h2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_eh2h/latest/doc/DW_ahb_eh2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gs/latest/doc/DW_axi_gs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_dmac/latest/doc/DW_ahb_dmac_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb_ictl/latest/doc/DW_ahb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2h/latest/doc/DW_axi_x2h_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ictl/latest/doc/DW_apb_ictl_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rap/latest/doc/DW_apb_rap_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_timers/latest/doc/DW_apb_timers_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_wdt/latest/doc/DW_apb_wdt_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_gpio/latest/doc/DW_apb_gpio_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_ssi/latest/doc/DW_apb_ssi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_rtc/latest/doc/DW_apb_rtc_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb/latest/doc/DW_apb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2s/latest/doc/DW_apb_i2s_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_gm/latest/doc/DW_axi_gm_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_hmx/latest/doc/DW_axi_hmx_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_memctl/latest/doc/dmctl_db.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2p/latest/doc/DW_axi_x2p_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_uart/latest/doc/DW_apb_uart_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_apb_i2c/latest/doc/DW_apb_i2c_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi/latest/doc/DW_axi_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_rs/latest/doc/DW_axi_rs_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://www.synopsys.com/dw/doc.php/iip/DW_axi_x2x/latest/doc/DW_axi_x2x_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 19SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Product Overview

You can connect, configure, synthesize, and verify the DW_apb_ssi within a DesignWare subsystem using
coreAssembler, documentation for which is available on the web in the coreAssembler User Guide.

If you want to configure, synthesize, and verify a single component such as the DW_apb_ssi component,
you might prefer to use coreConsultant, documentation for which is available in the coreConsultant User
Guide.

1.2 General Product Description
The Synopsys DW_apb_ssi is a component of the DesignWare Advanced Peripheral Bus (DW_apb) and
conforms to the AMBA Specification, Revision 2.0 from Arm®.

1.2.1 DW_apb_ssi Block Diagram

Figure 1-2 shows the following functional groupings of the main interfaces to the DW_apb_ssi block:

■ APB interface and DMA Controller Interface

■ Transmit and receive FIFO controllers and an FSM controller

■ Register block

■ Shift control and interrupt logic

Figure 1-2 DW_apb_ssi Block Diagram

https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreassembler_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coreconsultant_user.pdf#M8.newlink.Title
https://solvnet.synopsys.com
www.designware.com
http://www.arm.com/products/solutions/AMBA_Spec.html

20 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_ssi Databook

1.3 Features
DW_apb_ssi has the following features:

■ APB interface – Allows for easy integration into a DesignWare Synthesizable Components for
AMBA 2 implementation.

■ APB3 and APB4 protocol support.

■ Scalable APB data bus width – Supports APB data bus widths of 8, 16, and 32 bits.

■ Serial-master or serial-slave operation – Enables serial communication with serial-master or
serial-slave peripheral devices.

■ Configurable and programmable Dual/Quad/Octal SPI support in Master Mode – Configure
DW_apb_ssi to support Dual/Quad/Octal SPI mode, and then program DW_apb_ssi for
dual/quad/octal SPI transfers.

■ Dual Data Rate (DDR) and Read Data Strobe (RDS) Support - Enables the DW_apb_ssi master to
perform operations with the device in DDR and RDS modes when working in Dual/Quad/Octal
mode of operation.

■ Data Mask Support - Enables the DW_apb_ssi to selectively update the bytes in the device. This
feature is applicable only in enhanced SPI modes.

DW_apb_ssi

APB
Interface

Shift
Control
Logic

Transmit
FIFO

Receive
FIFO

FSM
Control

Clock
Pre-scale

DMA
Interface

Register
Block Interrupt

Logic

Control

Control

Transmit
FIFO

Receive
FIFO

Memory

Memory

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 21

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

■ eXecute-In-Place (XIP) support - Enables the DW_apb_ssi master to behave as a memory mapped
I/O and fetches the data from the device based on the APB read request. This feature is applicable
only in enhanced SPI modes.

■ DMA Controller Interface – Enables the DW_apb_ssi to interface to a DMA controller over the bus
using a handshaking interface for transfer requests.

■ Independent masking of interrupts – Master collision, transmit FIFO overflow, transmit FIFO empty,
receive FIFO full, receive FIFO underflow, and receive FIFO overflow interrupts can all be masked
independently.

■ Multi-master contention detection – Informs the processor of multiple serial-master accesses on the
serial bus.

■ Bypass of meta-stability flip-flops for synchronous clocks – When the APB clock (pclk) and the
DW_apb_ssi serial clock (ssi_clk) are synchronous, meta-stable flip-flops are not used when
transferring control signals across these clock domains.

■ Programmable delay on the sample time of the received serial data bit (rxd), when configured in
Master Mode; enables programmable control of routing delays resulting in higher serial data-bit
rates.

■ Programmable features:

❑ Serial interface operation – Choice of Motorola SPI, Texas Instruments Synchronous Serial
Protocol or National Semiconductor Microwire.

❑ Clock bit-rate – Dynamic control of the serial bit rate of the data transfer; used in only
serial-master mode of operation.

❑ Data Item size (4 to 32 bits) – Item size of each data transfer under the control of the programmer.

■ Configurable features:

❑ FIFO depth – Configurable depth of the transmit and receive FIFO buffers from 2 to 256 words
deep. The FIFO width is fixed at 16/32 bits, depending upon the SSI_MAX_XFER_SIZE
parameter.

❑ Number of slave select outputs – When operating as a serial master, 1 to 16 serial slave-select
output signals can be generated.

❑ Hardware/software slave-select – Dedicated hardware slave-select lines can be used or software
control can be used to target the serial-slave device.

❑ Combined or individual interrupt lines – You may choose to bring all individual interrupt lines or
one combined interrupt line from the DW_apb_ssi to the interrupt controller.

❑ Interrupt polarity – This configuration option selects the active level of the output interrupt lines.

❑ Serial clock polarity – This configuration option selects the serial-clock polarity of the SPI format
directly after reset.

❑ Serial clock phase – This configuration option selects the serial-clock phase of the SPI format
directly after reset.

Source code for this component is available on a per-project basis as a DesignWare Core. Contact your local
sales office for the details.

https://solvnet.synopsys.com
www.designware.com

22 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Product Overview DesignWare DW_apb_ssi Databook

1.4 Standards Compliance
The DW_apb_ssi component conforms to the AMBA Specification, Revision 2.0 from Arm®. Readers are
assumed to be familiar with this specification.

1.5 Verification Environment Overview
The DW_apb_ssi includes an extensive verification environment, which sets up and invokes your selected
simulation tool to execute tests that verify the functionality of the configured component. You can then
analyze the results of the simulation.

The “Verification” on page 185 section discusses the specific procedures for verifying the DW_apb_ssi.

1.6 Licenses
Before you begin using the DW_apb_ssi, you must have a valid license. For more information, see
“Licenses” in the DesignWare Synthesizable Components for AMBA 2/AMBA 3 AXI Installation Guide.

1.7 Where To Go From Here
At this point, you may want to get started working with the DW_apb_ssi component within a subsystem or
by itself. Synopsys provides several tools within its coreTools suite of products for the purposes of
configuration, synthesis, and verification of single or multiple synthesizable IP components—
coreConsultant and coreAssembler. For information on the different coreTools, see Guide to coreTools
Documentation.

For more information about configuring, synthesizing, and verifying just your DW_apb_ssi component, see
“Overview of the coreConsultant Configuration and Integration Process” in DesignWare Synthesizable
Components for AMBA 2 User Guide.

For more information about implementing your DW_apb_ssi component within a DesignWare subsystem
using coreAssembler, see “Overview of the coreAssembler Configuration and Integration Process”
DesignWare Synthesizable Components for AMBA 2 User Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
http://www.arm.com/products/solutions/AMBA_Spec.html
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/coretools/latest/coretools_overview.pdf#M8.newlink.Title
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/DW_iip_amba_user.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 23

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

2
Functional Description

The DW_apb_ssi is a configurable, synthesizable, and programmable component that is a full-duplex
master or slave-synchronous serial interface. The host processor accesses data, control, and status
information on the DW_apb_ssi through the APB interface. The DW_apb_ssi may also interface with a
DMA Controller using an optional set of DMA signals, which can be selected at configuration time.

As described in more detail later, the DW_apb_ssi can be configured in one of two modes of operations: as a
serial master or a serial slave. The DW_apb_ssi can connect to any serial-master or serial-slave peripheral
device using one of the following interfaces:

■ Motorola Serial Peripheral Interface (SPI)

■ Texas Instruments Serial Protocol (SSP)

■ National Semiconductor Microwire

2.1 DW_apb_ssi Overview
In order for the DW_apb_ssi to connect to a serial-master or serial-slave peripheral device, the peripheral
must have a least one of the following interfaces:

■ Motorola Serial Peripheral Interface (SPI) – A four-wire, full-duplex serial protocol from Motorola.
There are four possible combinations for the serial clock phase and polarity. The clock phase (SCPH)
determines whether the serial transfer begins with the falling edge of the slave select signal or the
first edge of the serial clock. The slave select line is held high when the DW_apb_ssi is idle or
disabled. For more information, see “Motorola Serial Peripheral Interface (SPI)” on page 47.

■ Texas Instruments Serial Protocol (SSP) – A four-wire, full-duplex serial protocol. The slave select
line used for SPI and Microwire protocols doubles as the frame indicator for the SSP protocol. For
more information, see “Texas Instruments Synchronous Serial Protocol (SSP)” on page 53.

■ National Semiconductor Microwire – A half-duplex serial protocol, which uses a control word
transmitted from the serial master to the target serial slave. For more information, see “National
Semiconductor Microwire” on page 54.

You can program the FRF (frame format) bit field in the Control Register 0 (CTRLR0) to select which
protocol is used. You specify the FRF at configuration time to be hardcoded or programmable by setting the
SSI_HC_FRF parameter. For more information about this configuration parameter, see “Parameter
Descriptions” on page 91.

https://solvnet.synopsys.com
www.designware.com

24 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

The serial protocols supported by the DW_apb_ssi allow for serial slaves to be selected or addressed using
either hardware or software. When implemented in hardware, serial slaves are selected under the control of
dedicated hardware select lines. The number of select lines generated from the serial master is equal to the
number of serial slaves present on the bus. The serial-master device asserts the select line of the target serial
slave before data transfer begins. This architecture is illustrated in Figure 2-1(A).

When implemented in software, the input select line for all serial slave devices should originate from a
single slave select output on the serial master. In this mode it is assumed that the serial master has only a
single slave select output. If there are multiple serial masters in the system, the slave select output from all
masters can be logically ANDed to generate a single slave select input for all serial slave devices.

The main program in the software domain controls selection of the target slave device; this architecture is
illustrated in Figure 2-1(B). Software would use the SSIENR register in all slaves in order to control which
slave is to respond to the serial transfer request from the master device.

The following example is pseudo code that illustrates how to use software to select the target slave.

2.1.1 Example of Target Slave Selection Using Software

int main() {

// This function sets the SSI_EN bit to logic ‘0’ in the SSIENR register
// of each device on the serial bus

disable_all_serial_devices();

// This function initializes the master device for the serial transfer
// 1. Write CTRLR0 to match the required transfer
// 2. If transfer is receive only write number of frames into CTRLR1
// 3. Write BAUDR to set the transfer baud rate.
// 4. Write TXFTLR and RXFTLR to set FIFO threshold levels
// 5. Write IMR register to set interrupt masks
// 6. Write SER register bit[0] to logic '1'
// 7. Write SSIENR register bit[0] to logic '1' to enable the master.

initialize_mst(ssi_mst_1);

// This function initializes the target slave device (slave 1 in this example)
// for the serial transfer.
// 1. Write CTRLR0 to match the required transfer
// 2. Write TXFTLR and RXFTLR to set FIFO threshold levels
// 3. Write IMR register to set interrupt masks
// 4. Write SSIENR register bit[0] to logic '1' to enable the slave.
// 5. If the slave is to transmit data, write data into TX FIFO
// Now the slave is enabled and awaiting an active level on its
// ss_in_n input port. Note all other serial slaves are disabled (SSI_EN=0)
// and therefore does not respond to an active level on their ss_in_n port.

initialize_slv(ssi_slv_1);

// This function begins the serial transfer by writing transmit data into
// the master's TX FIFO.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 25SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

start_serial_xfer(ssi_mst_1);

// You can poll the busy status with a function or use an ISR to determine
// when the serial transfer has completed.
}

The DW_apb_ssi does not enforce hardware or software control for serial-slave device selection. You can
configure the DW_apb_ssi for either implementation, illustrated in Figure 2-1.

Figure 2-1 Hardware/Software Slave Selection

2.2 Clock Ratios
When DW_apb_ssi is configured as a master device, the maximum frequency of the bit-rate clock (sclk_out)
is one-half the frequency of ssi_clk. This allows the shift control logic to capture data on one clock edge of
sclk_out and propagate data on the opposite edge.

Figure 2-2 on page 25 illustrates the maximum ratio between sclk_out and ssi_clk.

Figure 2-2 Maximum sclk_out/ssi_clk Ratio

The sclk_out line toggles only when an active transfer is in progress. At all other times it is held in an
inactive state, as defined by the serial protocol under which it operates.

Master Slave

Slave

ss_0

ss_x

ss

ss

.

.

.

Master Slave

Slave

ss
ss

ss

A B

Data BusData Bus

ss = slave select line

capture3drive 3capture2drive2capture1drive1capture

MSB

ssi_clk

sclk_out

txd/rxd

https://solvnet.synopsys.com
www.designware.com

26 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

The frequency of sclk_out can be derived from the following equation:

SCKDV is a bit field in the programmable register BAUDR, holding any even value in the range 0 to 65,534.
If SCKDV is 0, then sclk_out is disabled.

When DW_apb_ssi is configured as a slave device, the minimum frequency of ssi_clk depends on the
SSI_ENH_CLK_RATIO configuration parameter and the operation of the slave peripheral.

2.2.1 SSI_ENH_CLK_RATIO = 0

If the slave device is receive only, the minimum frequency of ssi_clk is eight times the maximum expected
frequency of the bit-rate clock from the master device (sclk_in). The sclk_in signal is double synchronized to
the ssi_clk domain, and then it is edge detected.

If the slave device is transmit and receive, the minimum frequency of ssi_clk is 12 times the maximum
expected frequency of the bit-rate clock from the master device (sclk_in). This minimum frequency is to
ensure that data on the master's rxd line is stable before the master's shift control logic captures the data.
The 12:1 ratio ensures that the slave has driven data onto the master's rxd line three ssi_clk cycles before the
data is captured, which is indicated by tc (time before capture) in Figure 2-3.

Figure 2-3 Slave ssi_clk/sclk_in Ratio

2.2.2 SSI_ENH_CLK_RATIO = 1

In this mode, the transmit and receive shift registers work directly with the bit-rate clock from the master
device (sclk_in) to eliminate the need for synchronization.

To reduce the synchronization delay, the synchronization scheme uses two flip flops: one works on the
positive edge of ssi_clk; and other works on the negative edge of ssi_clk. These flip flops reduce the
synchronization delay to one ssi_clk cycle and enable DW_apb_ssi to work on lower clock ratios. When
SSI_ENH_CLK_RATIO=1, the DW_apb_ssi slave device minimum frequency of ssi_clk is 4 times the
maximum expected frequency of the bit-rate clock (sclk_in).

The bit-rate clock is gated according to different capture and driving edges for different frame formats. The
capture clock (clk_cap) is used in the receive shifter to capture the data on the rxd line. The driving clock
(clk_driv) is used in the transmit shifter to drive the data on the txd line. Figure 2-4, Figure 2-5, Figure 2-6

Fsclk_out
Fssi_clk
SCKDV--------------------=

mst capture

slv capture

Synchro tc

MSB

MSB

ssi_clk

sclk_in

rxd (from slv)

txd (from mst)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 27SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

and Figure 2-7 illustrate how capture and driving clocks are derived from bit-rate clock for different frame
formats.

Figure 2-4 Frame Format for Motorola Serial Peripheral Interface (SPI) with SCPH = 0

Figure 2-5 Frame Format for Motorola Serial Peripheral Interface (SPI) with SCPH = 1

Figure 2-6 National Semiconductors Microwire Frame Format

ss_in_n

SCPOL=0 sclk_in

SCPOL=1 sclk_in

clk_driv

clk_cap

ss_in_n

SCPOL=0 sclk_in

SCPOL=1 sclk_in

clk_driv

clk_cap

ss_in_n

sclk_in

clk_driv

clk_cap

https://solvnet.synopsys.com
www.designware.com

28 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-7 Texas Instruments Synchronous Serial Protocol (SSP)

If the frame format is programmed for SPI with SCPH=0, then before the first edge of bit-rate clock (sclk_in)
arrives, the data must be present on the txd line. Internally to drive data on 'txd' line the synchronized
version of the slave select (ss_in_n) signal is used. This mechanism takes 2 cycles on ssi_clk to complete and
the data is driven on the 3rd cycle of ssi_clk as shown in Figure 2-8. Therefore, to capture the data correctly,
the first edge of bit-rate clock (sclk_in) must arrive after at least 4 ssi_clk cycles from when the slave is
selected (ss_in_n).

Figure 2-8 Driving TXD When SCPH = 0

2.2.3 Frequency Ratio Summary

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out/sclk_in) and the
DW_apb_ssi peripheral clock (ssi_clk) are as follows:

■ Master

❑ Fssi_clk >= 2 × (maximum Fsclk_out)

■ Slave SSI_ENH_CLK_RATIO = 0

❑ Receive only: Fssi_clk >= 8 × (maximum Fsclk_in)

NoteNoteNoteNote The SSI_ENH_CLK_RATIO mode is supported only when the DWC-APB-
Advanced-Source source license exists.

ss_in_n

sclk_in

clk_driv

clk_cap

ss_in_n

 sclk_in

ssi_in_n_sync

txd

 ssi_clk

MSB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 29SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

❑ Transmit and Receive: Fssi_clk >= 12 × (maximum Fsclk_in)

■ Slave SSI_ENH_CLK_RATIO = 1

❑ Fssi_clk >= 4 × (maximum Fsclk_in)

2.2.3.1 Design For Test

As explained “SSI_ENH_CLK_RATIO = 1” on page 26, when SSI_ENH_CLK_RATIO is set to 1, then sclk_in
is used as capture and driving clock for rxd and txd lines, respectively. The polarity of clock is changed
based on frame format being used. During the scan testing, these flops may remain uncovered. Therefore,
you must connect scan_mode to chip-level scan mode. During scan mode (scan_mode =1), the clock input
for these flip-flops are connected to ssi_clk, rather than the internally derived clk_driv and clk_cap. This
makes register testable and subsequent downsteam points controllable.

2.3 Transmit and Receive FIFO Buffers
The FIFO buffers used by the DW_apb_ssi are internal D-type flip-flops that can be configured in depth
between 2 to 256. The width of both transmit and receive FIFO buffers is fixed at 16/32-bits (depending
upon SSI_MAX_XFER_SIZE), due to the serial specifications, which state that a serial transfer (data frame)
can be 4 to 16/32 bits in length. Data frames that are less than 16/32-bits (depending upon
SSI_MAX_XFER_SIZE) in size must be right-justified when written into the transmit FIFO buffer. The shift
control logic automatically right-justifies receive data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data
frames in a single FIFO location; for example, you may not store two 8-bit data frames in a single FIFO
location. If an 8-bit data frame is required, the upper 8-bits of the FIFO entry are ignored or unused when
the serial shifter transmits the data.

The transmit FIFO is loaded by APB write commands to the DW_apb_ssi data register (DR). Data are
popped (removed) from the transmit FIFO by the shift control logic into the transmit shift register. The
transmit FIFO generates a FIFO empty interrupt request (ssi_txe_intr) when the number of entries in the
FIFO is less than or equal to the FIFO threshold value. The threshold value, set through the programmable
register TXFTLR, determines the level of FIFO entries at which an interrupt is generated. The threshold
value allows you to provide early indication to the processor that the transmit FIFO is nearly empty. A
transmit FIFO overflow interrupt (ssi_txo_intr) is generated if you attempt to write data into an already full
transmit FIFO.

Data are popped from the receive FIFO by APB read commands to the DW_apb_ssi data register (DR). The
receive FIFO is loaded from the receive shift register by the shift control logic. The receive FIFO generates a
FIFO-full interrupt request (ssi_rxf_intr) when the number of entries in the FIFO is greater than or equal to
the FIFO threshold value plus 1. The threshold value, set through programmable register RXFTLR,
determines the level of FIFO entries at which an interrupt is generated.

The threshold value allows you to provide early indication to the processor that the receive FIFO is nearly
full. A receive FIFO overrun interrupt (ssi_rxo_intr) is generated when the receive shift logic attempts to
load data into a completely full receive FIFO. However, this newly received data are lost. A receive FIFO

NoteNoteNoteNote The transmit and receive FIFO buffers are cleared when the DW_apb_ssi is disabled (SSI_EN
= 0) or when it is reset (presetn).

https://solvnet.synopsys.com
www.designware.com

30 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

underflow interrupt (ssi_rxu_intr) is generated if you attempt to read from an empty receive FIFO. This
alerts the processor that the read data are invalid.

Table 2-1 provides description for different Transmit FIFO Threshold values.

Table 2-1 Transmit FIFO Threshold (TFT) Decode Values

Table 2-2 provides description for different Receive FIFO Threshold values.

Table 2-2 Receive FIFO Threshold (TFT) Decode Values

TFT Value Description

0000_0000 ssi_txe_intr is asserted when 0 data entries are present in transmit FIFO

0000_0001 ssi_txe_intr is asserted when 1 or less data entry is present in transmit FIFO

0000_0010 ssi_txe_intr is asserted when 2 or less data entries are present in transmit FIFO

0000_0011 ssi_txe_intr is asserted when 3 or less data entries are present in transmit FIFO

... ...

... ...

1111_1100 ssi_txe_intr is asserted when 252 or less data entries are present in transmit FIFO

1111_1101 ssi_txe_intr is asserted when 253 or less data entries are present in transmit FIFO

1111_1110 ssi_txe_intr is asserted when 254 or less data entries are present in transmit FIFO

1111_1111 ssi_txe_intr is asserted when 255 or less data entries are present in transmit FIFO

RFT Value Description

0000_0000 ssi_rxf_intr is asserted when 1 or more data entry is present in receive FIFO

0000_0001 ssi_rxf_intr is asserted when 2 or more data entries are present in receive FIFO

0000_0010 ssi_rxf_intr is asserted when 3 or more data entries are present in receive FIFO

0000_0011 ssi_rxf_intr is asserted when 4 or more data entries are present in receive FIFO

... ...

... ...

1111_1100 ssi_rxf_intr is asserted when 253 or more data entries are present in receive FIFO

1111_1101 ssi_rxf_intr is asserted when 254 or more data entries are present in receive FIFO

1111_1110 ssi_rxf_intr is asserted when 255 or more data entries are present in receive FIFO

1111_1111 ssi_rxf_intr is asserted when 256 data entries are present in receive FIFO

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 31SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.4 32-Bit Frame Size Support
The SSI_MAX_XFER_SIZE configuration parameter is used to select the maximum programmable value in
of data frame size. The following changes occur in the core when the SSI_MAX_XFER_SIZE is configured to
32 bits:

■ dfs_32 (CTRLR0[20:16]) becomes valid, which contains the value of data frame size. The new register
field holds the values 0 to 31. The dfs (CTRLR0[3:0]) beomes invalid and writing to this register has
no effect.

■ The receive and transmit FIFO widths increase from 16 to 32 bits.

■ All 32 bits of the data register become valid. (For more information, see “Data Register APB Access”
on page 87.)

2.5 SSI Interrupts
The DW_apb_ssi supports combined and individual interrupt requests, each of which can be masked. The
combined interrupt request is the ORed result of all other DW_apb_ssi interrupts after masking. The system
designer has the choice of routing individual interrupt requests or only the combined interrupt request to
the Interrupt Controller. All DW_apb_ssi interrupts are level interrupts and have the same active polarity
level; you can configure this polarity level as active-high or active-low.

The DW_apb_ssi interrupts are described as follows:

■ Transmit FIFO Empty Interrupt (ssi_txe_intr) – Set when the transmit FIFO is equal to or below its
threshold value and requires service to prevent an under-run. The threshold value, set through a
software-programmable register, determines the level of transmit FIFO entries at which an interrupt
is generated. This interrupt is cleared by hardware when data are written into the transmit FIFO
buffer, bringing it over the threshold level.

■ Transmit FIFO Overflow Interrupt (ssi_txo_intr) – Set when an APB access attempts to write into the
transmit FIFO after it has been completely filled. When set, data written from the APB is discarded.
This interrupt remains set until you read the transmit FIFO overflow interrupt clear register
(TXOICR).

■ Receive FIFO Full Interrupt (ssi_rxf_intr) – Set when the receive FIFO is equal to or above its
threshold value plus 1 and requires service to prevent an overflow. The threshold value, set through
a software-programmable register, determines the level of receive FIFO entries at which an interrupt
is generated. This interrupt is cleared by hardware when data are read from the receive FIFO buffer,
bringing it below the threshold level.

■ Receive FIFO Overflow Interrupt (ssi_rxo_intr) – Set when the receive logic attempts to place data
into the receive FIFO after it has been completely filled. When set, newly received data are discarded.
This interrupt remains set until you read the receive FIFO overflow interrupt clear register
(RXOICR).

■ Receive FIFO Underflow Interrupt (ssi_rxu_intr) – Set when an APB access attempts to read from the
receive FIFO when it is empty. When set, zeros are read back from the receive FIFO. This interrupt
remains set until you read the receive FIFO underflow interrupt clear register (RXUICR).

https://solvnet.synopsys.com
www.designware.com

32 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

■ Multi-Master Contention Interrupt (ssi_mst_intr) – Present only when the DW_apb_ssi component is
configured as a serial-master device. The interrupt is set when another serial master on the serial bus
selects the DW_apb_ssi master as a serial-slave device and is actively transferring data. This informs
the processor of possible contention on the serial bus. This interrupt remains set until you read the
multi-master interrupt clear register (MSTICR).

■ Combined Interrupt Request (ssi_intr) – OR'ed result of all the above interrupt requests after
masking. To mask this interrupt signal, you must mask all other DW_apb_ssi interrupt requests.

For more information on interrupts, see Appendix 4, “Signal Descriptions”.

2.6 Transfer Modes
When transferring data on the serial bus, the DW_apb_ssi operates in the modes discussed in this section.

The transfer mode (TMOD) is set by writing to control register 0 (CTRLR0), as described in “Register
Descriptions” on page 119.

2.6.1 Transmit and Receive

When TMOD = 2‘b00, both transmit and receive logic are valid. The data transfer occurs as normal
according to the selected frame format (serial protocol). Transmit data are popped from the transmit FIFO
and sent through the txd line to the target device, which replies with data on the rxd line. The receive data
from the target device is moved from the receive shift register into the receive FIFO at the end of each data
frame.

2.6.2 Transmit Only

When TMOD = 2‘b01, the receive data are invalid and should not be stored in the receive FIFO. The data
transfer occurs as normal, according to the selected frame format (serial protocol). Transmit data are
popped from the transmit FIFO and sent through the txd line to the target device, which replies with data
on the rxd line. At the end of the data frame, the receive shift register does not load its newly received data
into the receive FIFO. The data in the receive shift register is overwritten by the next transfer. You should
mask interrupts originating from the receive logic when this mode is entered.

2.6.3 Receive Only

When TMOD = 2‘b10, the transmit data are invalid. When configured as a slave, the transmit FIFO is never
popped in Receive Only mode. The txd output remains at a constant logic level during the transmission.
The data transfer occurs as normal according to the selected frame format (serial protocol). The receive data
from the target device is moved from the receive shift register into the receive FIFO at the end of each data
frame. You should mask interrupts originating from the transmit logic when this mode is entered.

NoteNoteNoteNote The transfer mode setting does not affect the duplex of the serial transfer. TMOD is ignored for
Microwire transfers, which are controlled by the MWCR register.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 33SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.6.4 EEPROM Read

When TMOD = 2‘b11, the transmit data is used to transmit an opcode and/or an address to the EEPROM
device. Typically this takes three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower
address). During the transmission of the opcode and address, no data is captured by the receive logic (as
long as the DW_apb_ssi master is transmitting data on its txd line, data on the rxd line is ignored). The
DW_apb_ssi master continues to transmit data until the transmit FIFO is empty. Therefore, you should
ONLY have enough data frames in the transmit FIFO to supply the opcode and address to the EEPROM. If
more data frames are in the transmit FIFO than are needed, then read data is lost.

When the transmit FIFO becomes empty (all control information has been sent), data on the receive line
(rxd) is valid and is stored in the receive FIFO; the txd output is held at a constant logic level. The serial
transfer continues until the number of data frames received by the DW_apb_ssi master matches the value of
the NDF field in the CTRLR1 register + 1.

2.7 Operation Modes
The DW_apb_ssi can be configured in the fundamental modes of operation discussed in this section.

2.7.1 Serial Master Mode

This mode enables serial communication with serial-slave peripheral devices. When configured as a
serial-master device, the DW_apb_ssi initiates and controls all serial transfers. Figure 2-9 shows an example

NoteNoteNoteNote This transfer mode is only valid for master configurations.

NoteNoteNoteNote EEPROM read mode is not supported when the DW_apb_ssi is configured to be in the SSP
mode.

https://solvnet.synopsys.com
www.designware.com

34 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

of the DW_apb_ssi configured as a serial master with all other devices on the serial bus configured as serial
slaves.

Figure 2-9 DW_apb_ssi Configured as Master Device

The serial bit-rate clock, generated and controlled by the DW_apb_ssi, is driven out on the sclk_out line.
When the DW_apb_ssi is disabled (SSI_EN = 0), no serial transfers can occur and sclk_out is held in
“inactive” state, as defined by the serial protocol under which it operates.

2.7.1.1 Master Contention Input

The DW_apb_ssi master configuration has a serial slave select input, ss_in_n, that can be used to inform the
DW_apb_ssi master that another serial master is active on the bus. When this input is active—the active
level depends on the serial protocol—the DW_apb_ssi master remains in an IDLE state and holds off any
pending serial transfer until the ss_in_n input is returned to an in-active level.

txd
ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_n[1]

ss_in_n

.

.

.

DI

DO

SCLK

SS

DI
DO

SCLK

SS

DW_apb_ssi Master Slave Peripheral 1

Slave Peripheral n

Should be driven to inactive level
(protocol-dependent) in single
master systems; may not need

Glue

Logic
glue logic.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 35SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

You should use the ss_in_n input to assist arbitration between multiple serial bus masters. A simple usage
example is shown in Figure 2-10.

Figure 2-10 Arbitration Between Multiple Serial Masters

In this example, it is a case of “first-come-first-served” arbitration. Although the example does create the
potential for locking the bus, if both masters assert their slave select outputs on the same clock edge, it
shows how the ss_in_n signal can be used. A more complex arbiter block, that obeys the principles
illustrated in the figure, should be used to arbitrate between master select outputs, slave select inputs and
master select inputs, to prevent any potential bus locking occurrences.

If the DW_apb_ssi master is the only master device on the serial bus, you might need to insert some glue
logic to control the logic level on the master ss_in_n input.

Glue logic is required if both of the following are true:

■ You dynamically change the serial protocol

■ One of the protocols being used is SSP

txd
ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_in_n

DI

DO

SCLK

SS

DW_apb_ssi Master 1 Slave Peripheral 1

txd
ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_in_n

DW_apb_ssi Master 2

XOR gate for SSP interfaces
XNOR gate for SSI and Microwire interfaces

https://solvnet.synopsys.com
www.designware.com

36 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

There are several methods for implementing this glue logic; Figure 2-11 illustrates an example architecture.

Figure 2-11 Glue Logic for Controlling Logic Level on Master ss_in_n Input

In this architecture, the ss_in_n signal is driven low when you writes 2'b01 (SSP) into the FRF bit field in
control register 0 (CTRLR0). The ss_in_n signal is driven high for all other values written into the FRF bit
field.

Glue logic is not required under either of the following conditions:

■ If you never intend to dynamically change the serial protocol that the DW_apb_ssi master is
operating under.

■ If you do change the serial protocol dynamically but do not use the SSP protocol.

Under these conditions, the ss_in_n signal can be tied high or low depending on which serial protocol you
use.

■ If the serial protocol is SPI or MicroWire, the ss_in_n signal should be tied high.

■ If the serial protocol being used is SSP, the ss_in_n signal should be tied low.

2.7.1.2 RXD Sample Delay

When the DW_apb_ssi is configured as a master, additional logic can be included in the design in order to
delay the default sample time of the rxd signal. This additional logic can help to increase the maximum
achievable frequency on the serial bus.

NoteNoteNoteNote If the Default Frame Format in the DW_apb_ssi is not SSP, the register shown in the diagram
below should reset to 1.

paddr[8]
paddr[7]

paddr[2]

pwdata[5]

pwdata[4]

(ssi)_psel
penable

pwrite

… 0

1

Set

Clear

pclk

ss_in_n

00

01

10

11

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 37SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

To include this additional logic, the SSI_HAS_RX_SAMPLE_DELAY parameter should have a value of 1.

Round trip routing delays on the sclk_out signal from the master and the rxd signal from the slave can mean
that the timing of the rxd signal—as seen by the master—has moved away from the normal sampling time.
Figure 2-12 illustrates this situation.

Figure 2-12 Effects of Round-Trip Routing Delays on sclk_out Signal

The Slave uses the sclk_out signal from the master as a strobe in order to drive rxd signal data onto the serial
bus. Routing and sampling delays on the sclk_out signal by the slave device can mean that the rxd bit has
not stabilized to the correct value before the master samples the rxd signal. Figure 2-12 shows an example of
how a routing delay on the rxd signal can result in an incorrect rxd value at the default time when the
master samples the port.

Without the RXD Sample Delay logic, you would have to increase the baud-rate for the transfer in order to
ensure that the setup times on the rxd signal are within range; this results in reducing the frequency of the
serial interface.

When the RXD Sample Delay logic is included, you can dynamically program a delay value in order to
move the sampling time of the rxd signal equal to a number of ssi_clk cycles from the default.

The sample delay logic has a resolution of one ssi_clk cycle. Software can “train” the serial bus by coding a
loop that continually reads from the slave and increments the master's RXD Sample Delay value until the
correct data is received by the master.

MSB

MSB

LSB

LSB

LSB

LSBMSB

MSB

ssi_clk

sclk_out

txd_mst

rxd_mst

sclk_in

rxd_slv

txd_slv

baud-rate = 4

dly=0

dly=5

dly=6

dly=7

Red arrows indicate routing delay between master and slave devices

Blue arrow indicates sampling delay within slave from receiving slk_in to driving txd out

https://solvnet.synopsys.com
www.designware.com

38 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

2.7.1.3 Data Transfers

Data transfers are started by the serial-master device. When the DW_apb_ssi is enabled (SSI_EN=1), at least
one valid data entry is present in the transmit FIFO and a serial-slave device is selected. When actively
transferring data, the busy flag (BUSY) in the status register (SR) is set. You must wait until the busy flag is
cleared before attempting a new serial transfer.

2.7.1.4 Master SPI and SSP Serial Transfers

The sections “Motorola Serial Peripheral Interface (SPI)” on page 47 and “Texas Instruments Synchronous
Serial Protocol (SSP)” on page 53 describe the SPI and SSP serial protocols, respectively. They include
timing diagrams and provide information as to how data are structured in the transmit and receive the
FIFOs before and after the serial transfer.

When the transfer mode is “transmit and receive” or “transmit only” (TMOD = 2'b00 or TMOD = 2'b01,
respectively), transfers are terminated by the shift control logic when the transmit FIFO is empty. For
continuous data transfers, you must ensure that the transmit FIFO buffer does not become empty before all
the data have been transmitted. The transmit FIFO threshold level (TXFTLR) can be used to early interrupt
(ssi_txe_intr) the processor indicating that the transmit FIFO buffer is nearly empty. When a DMA is used
for APB accesses, the transmit data level (DMATDLR) can be used to early request (dma_tx_req) the DMA
Controller, indicating that the transmit FIFO is nearly empty. The FIFO can then be refilled with data to
continue the serial transfer. You may also write a block of data (at least two FIFO entries) into the transmit
FIFO before enabling a serial slave. This ensures that serial transmission does not begin until the number of
data-frames that make up the continuous transfer are present in the transmit FIFO.

When the transfer mode is “receive only” (TMOD = 2'b10), a serial transfer is started by writing one
“dummy” data word into the transmit FIFO when a serial slave is selected. The txd output from the
DW_apb_ssi is held at a constant logic level for the duration of the serial transfer. The transmit FIFO is
popped only once at the beginning and may remain empty for the duration of the serial transfer. The end of
the serial transfer is controlled by the “number of data frames” (NDF) field in control register 1 (CTRLR1).

If, for example, you want to receive 24 data frames from a serial-slave peripheral, you should program the
NDF field with the value 23; the receive logic terminates the serial transfer when the number of frames
received is equal to the NDF value + 1. This transfer mode increases the bandwidth of the APB bus as the
transmit FIFO never needs to be serviced during the transfer. The receive FIFO buffer should be read each
time the receive FIFO generates a FIFO full interrupt request to prevent an overflow.

When the transfer mode is “eeprom_read” (TMOD = 2‘b11), a serial transfer is started by writing the opcode
and/or address into the transmit FIFO when a serial slave (EEPROM) is selected. The opcode and address
are transmitted to the EEPROM device, after which read data is received from the EEPROM device and
stored in the receive FIFO. The end of the serial transfer is controlled by the NDF field in the control
register 1 (CTRLR1).

NoteNoteNoteNote The BUSY status is not set when the data are written into the transmit FIFO. This bit gets
set only when the target slave has been selected and the transfer is underway. After writing
data into the transmit FIFO, the shift logic does not begin the serial transfer until a positive
edge of the sclk_out signal is present. The delay in waiting for this positive edge depends
on the baud rate of the serial transfer. Before polling the BUSY status, you should first poll
the TFE status (waiting for 1) or wait for BAUDR * ssi_clk clock cycles.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 39SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

The receive FIFO threshold level (RXFTLR) can be used to give early indication that the receive FIFO is
nearly full. When a DMA is used for APB accesses, the receive data level (DMARDLR) can be used to early
request (dma_rx_req) the DMA Controller, indicating that the receive FIFO is nearly full.

A typical software flow for completing an SPI or SSP serial transfer from the DW_apb_ssi serial master is
outlined as follows:

1. If the DW_apb_ssi is enabled, disable it by writing 0 to the SSI Enable register (SSIENR).

2. Set up the DW_apb_ssi control registers for the transfer; these registers can be set in any order.

❑ Write Control Register 0 (CTRLR0). For SPI transfers, the serial clock polarity and serial clock
phase parameters must be set identical to target slave device.

❑ If the transfer mode is receive only, write CTRLR1 (Control Register 1) with the number of frames
in the transfer minus 1; for example, if you want to receive four data frames, write this register
with 3.

❑ Write the Baud Rate Select Register (BAUDR) to set the baud rate for the transfer.

❑ Write the Transmit and Receive FIFO Threshold Level registers (TXFTLR and RXFTLR,
respectively) to set FIFO threshold levels.

❑ Write the IMR register to set up interrupt masks.

❑ The Slave Enable Register (SER) register can be written here to enable the target slave for
selection. If a slave is enabled here, the transfer begins as soon as one valid data entry is present in
the transmit FIFO. If no slaves are enabled prior to writing to the Data Register (DR), the transfer
does not begin until a slave is enabled.

3. Enable the DW_apb_ssi by writing 1 to the SSIENR register.

4. Write data for transmission to the target slave into the transmit FIFO (write DR).

If no slaves were enabled in the SER register at this point, enable it now to begin the transfer.

5. Poll the BUSY status to wait for completion of the transfer. The BUSY status cannot be polled
immediately; for more information, see the note on page 38.

If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write DR). If a receive
FIFO full interrupt request is made, read the receive FIFO (read DR).

6. The transfer is stopped by the shift control logic when the transmit FIFO is empty. If the transfer
mode is receive only (TMOD = 2'b10), the transfer is stopped by the shift control logic when the
specified number of frames have been received. When the transfer is done, the BUSY status is reset to
0.

7. If the transfer mode is not transmit only (TMOD != 01), read the receive FIFO until it is empty.

8. Disable the DW_apb_ssi by writing 0 to SSIENR.

NoteNoteNoteNote EEPROM read mode is not supported when the DW_apb_ssi is configured to be in the SSP
mode.

https://solvnet.synopsys.com
www.designware.com

40 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-13 shows a typical software flow for starting a DW_apb_ssi master SPI/SSP serial transfer. The
diagram also shows the hardware flow inside the serial-master component.

Figure 2-13 DW_apb_ssi Master SPI/SSP Transfer Flow

IDLE

Disable

DW_apb_ssi

Write data to

Tx FIFO

Configure Master by
writing CTRLR0. CTRLR1,

BAUDR, TXFTLR,

Transfer in

progress

Interrupt?

BUSY?

Read Rx

FIFO

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent, then
write data into transmit

FIFO.
If the receive FIFO is

requesting, then read data
from receive FIFO.

Yes

No

Yes

No
TMOD = 01

You may fill FIFO here:
Transfer begins when

first data word is
present in the transmit

FIFO and a slave is
enabled.

Software Flow

IDLE

Pop data from Tx
FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

frame
transferred?

Transmit All frames
FIFO empty? transferred?

END

No

Yes Yes

No

TMOD = 01

TMOD = 10
TMOD = 00
TMOD = 01

RXFTLR, IMR, SER,
SPI_CTRLR0 (if Dual/Quad SPI)

Enable

DW_apb_ssi

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 41SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.7.1.5 Master Microwire Serial Transfers

“National Semiconductor Microwire” on page 54 describes the Microwire serial protocol in detail, including
timing diagrams and explaining how data are structured in the transmit and receive FIFOs before and after
a serial transfer.

Microwire serial transfers from the DW_apb_ssi serial master are controlled by the Microwire Control
Register (MWCR). The MWHS bit field enables and disables the Microwire handshaking interface. The
MDD bit field controls the direction of the data frame (the control frame is always transmitted by the master
and received by the slave). The MWMOD bit field defines whether the transfer is sequential or
nonsequential.

All Microwire transfers are started by the DW_apb_ssi serial master when there is at least one control word
in the transmit FIFO and a slave is enabled. When the DW_apb_ssi master transmits the data frame (MDD =
1), the transfer is terminated by the shift logic when the transmit FIFO is empty. When the DW_apb_ssi
master receives the data frame (MDD = 1), the termination of the transfer depends on the setting of the
MWMOD bit field. If the transfer is nonsequential (MWMOD = 0), it is terminated when the transmit FIFO
is empty after shifting in the data frame from the slave. When the transfer is sequential (MWMOD = 1), it is
terminated by the shift logic when the number of data frames received is equal to the value in the CTRLR1
register + 1.

When the handshaking interface on the DW_apb_ssi master is enabled (MWHS =1), the status of the target
slave is polled after transmission. Only when the slave reports a ready status does the DW_apb_ssi master
complete the transfer and clear its BUSY status. If the transfer is continuous, the next control/data frame is
not sent until the slave device returns a ready status.

A typical software flow for completing a Microwire serial transfer from the DW_apb_ssi serial master is
outlined as follows:

1. If the DW_apb_ssi is enabled, disable it by writing 0 to SSIENR.

2. Set up the DW_apb_ssi control registers for the transfer. These registers can be set in any order. Write
CTRLR0 to set transfer parameters.

❑ If the transfer is sequential and the DW_apb_ssi master receives data, write CTRLR1 with the
number of frames in the transfer minus 1; for instance, if you want to receive four data frames,
write this register with 3.

❑ Write BAUDR to set the baud rate for the transfer.

❑ Write TXFTLR and RXFTLR to set FIFO threshold levels.

❑ Write the IMR register to set up interrupt masks.

You can write the SER register to enable the target slave for selection. If a slave is enabled here, the
transfer begins as soon as one valid data entry is present in the transmit FIFO. If no slaves are enabled
prior to writing to the DR register, the transfer does not begin until a slave is enabled.

3. Enable the DW_apb_ssi by writing 1 to the SSIENR register.

4. If the DW_apb_ssi master transmits data, write the control and data words into the transmit FIFO
(write DR). If the DW_apb_ssi master receives data, write the control words into the transmit FIFO.

If no slaves were enabled in the SER register at this point, enable now to begin the transfer.

5. Poll the BUSY status to wait for completion of the transfer. The BUSY status cannot be polled
immediately; for more information, see the note on page 38.

https://solvnet.synopsys.com
www.designware.com

42 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

If a transmit FIFO empty interrupt request is made, write the transmit FIFO (write DR). If a receive
FIFO full interrupt request is made, read the receive FIFO (read DR).

6. The transfer is stopped by the shift control logic when the transmit FIFO is empty. If the transfer
mode is sequential and the DW_apb_ssi master receives data, the transfer is stopped by the shift
control logic when the specified number of data frames is received. When the transfer is done, the
BUSY status is reset to 0.

7. If the DW_apb_ssi master receives data, read the receive FIFO until it is empty.

8. Disable the DW_apb_ssi by writing 0 to SSIENR.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 43SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-14 shows a typical software flow for starting a DW_apb_ssi master Microwire serial transfer. The
diagram also shows the hardware flow inside the serial-master component.

Figure 2-14 DW_apb_ssi Master Microwire Transfer Flow

IDLE

Disable

DW_apb_ssi

Write control &

data to Tx FIFO

Configure Master
by writing CTRLR0.
CTRLR1, BAUDR,

Transfer in

progress

BUSY?

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent,
then write data into

transmit FIFO.
If the receive FIFO is
requesting, then read

data from receive FIFO.

Yes

No

Yes

No

MWCR[1]=1

If master receives data,
user need only write

control frames into the
Tx FIFO.

Transfer begins when
first control word is

present in the Transmit
FIFO and a slave is

enabled.

Software Flow

IDLE

Pop control frame from
Tx FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

control frame
transmitted?

Transmit All frames
FIFO empty? transferred?

END

Yes

Yes

Yes

No

TXFTLR, RXFTLR,
MWCR, IMR, SER

Enable

DW_apb_ssi

Pop data frame from
Tx FIFO into shifter

Receive Bit

All bits in
data frame
received?

Transmit Bit

All bits in
data frame

transmitted?

No

Yes

No No

MWCR[0]=0

MWCR[1]=0MWCR[1]=1

MWCR[0]=1

Interrupt?

Read Rx

FIFO

https://solvnet.synopsys.com
www.designware.com

44 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

2.7.2 Serial-Slave Mode

This mode enables serial communication with master peripheral devices. When the DW_apb_ssi is
configured as a slave device, all serial transfers are initiated and controlled by the serial bus master.
Figure 2-15 shows an example of the DW_apb_ssi configured as a serial slave in a single-master bus system.

When the DW_apb_ssi serial slave is selected during configuration, it enables its txd data onto the serial
bus. All data transfers to and from the serial slave are regulated on the serial clock line (sclk_in), driven
from the serial-master device. Data are propagated from the serial slave on one edge of the serial clock line
and sampled on the opposite edge.

Figure 2-15 DW_apb_ssi Configured as Slave Device

When the DW_apb_ssi serial slave is not selected, it must not interfere with data transfers between the
serial-master and other serial-slave devices. When the serial slave is not selected, its txd output is buffered,
resulting in a high impedance drive onto the serial master rxd line. The buffers shown in Figure 2-15 are
external to DW_apb_ssi.

The serial clock that regulates the data transfer is generated by the serial-master device and input to the
DW_apb_ssi slave on sclk_in. The slave remains in an idle state until selected by the bus master. When not
actively transmitting data, the slave must hold its txd line in a high impedance state to avoid interference
with serial transfers to other slave devices. The ssi_oe_n line is available for use to control the txd output
buffer. The slave continues to transfer data to and from the master device as long as it is selected. If the
master transmits to all serial slaves, a control bit (SLV_OE) in the DW_apb_ssi control register 0 (CTRLR0)
can be programmed to inform the slave if it should respond with data from the its txd line.

2.7.2.1 Slave SPI and SSP Serial Transfers

“Motorola Serial Peripheral Interface (SPI)” on page 47 and “Texas Instruments Synchronous Serial Protocol
(SSP)” on page 53 contain a description of the SPI and SSP serial protocols, respectively. The sections also
provide timing diagrams and information on how data are structured in the transmit and receive FIFOs
before and after the serial transfer.

DO
DI

SCLK

SS_O

SS_X ...

rxd

txd

ssi_oe_n

sclk_in

DI

DO

SCLK

SS

Master Device DW_apb_ssi Slave

Slave Peripheral n

ssi_in_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 45SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

If the DW_apb_ssi slave is receive only (TMOD=10), the transmit FIFO need not contain valid data because
the data currently in the transmit shift register is resent each time the slave device is selected. The TXE error
flag in the status register (SR) is not set when TMOD=01. You should mask the transmit FIFO empty
interrupt when this mode is used.

If the DW_apb_ssi slave transmits data to the master, you must ensure that data exists in the transmit FIFO
before a transfer is initiated by the serial-master device. If the master initiates a transfer to the DW_apb_ssi
slave when no data exists in the transmit FIFO, an error flag (TXE) is set in the DW_apb_ssi status register,
and the previously transmitted data frame is resent on txd. For continuous data transfers, you must ensure
that the transmit FIFO buffer does not become empty before all the data have been transmitted. The
transmit FIFO threshold level register (TXFTLR) can be used to early interrupt (ssi_txe_intr) the processor,
indicating that the transmit FIFO buffer is nearly empty. When a DMA Controller is used for APB accesses,
the DMA transmit data level register (DMATDLR) can be used to early request (dma_tx_req) the DMA
Controller, indicating that the transmit FIFO is nearly empty. The FIFO can then be refilled with data to
continue the serial transfer. The receive FIFO buffer should be read each time the receive FIFO generates a
FIFO full interrupt request to prevent an overflow. The receive FIFO threshold level register (RXFTLR) can
be used to give early indication that the receive FIFO is nearly full. When a DMA Controller is used for APB
accesses, the DMA receive data level register (DMARDLR) can be used to early request (dma_rx_req) the
DMA controller, indicating that the receive FIFO is nearly full.

A typical software flow for completing a continuous serial transfer from a serial master to the DW_apb_ssi
slave is described as follows:

1. If the DW_apb_ssi is enabled, disable it by writing 0 to SSIENR.

2. Set up the DW_apb_ssi control registers for the transfer. These registers can be set in any order.

a. Write CTRLR0 (for SPI transfers SCPH and SCPOL must be set identical to the master device).

b. Write TXFTLR and RXFTLR to set FIFO threshold levels.

c. Write the IMR register to set up interrupt masks.

3. Enable the DW_apb_ssi by writing 1 to the SSIENR register.

4. If the transfer mode is transmit and receive (TMOD=2'b00) or transmit only (TMOD=2'b01), write data
for transmission to the master into the transmit FIFO (Write DR).

If the transfer mode is receive only (TMOD=2'b10), there is no need to write data into the transmit
FIFO; the current value in the transmit shift register is retransmitted.

5. The DW_apb_ssi slave is now ready for the serial transfer. The transfer begins when the DW_apb_ssi
slave is selected by a serial-master device.

6. When the transfer is underway, the BUSY status can be polled to return the transfer status. If a
transmit FIFO empty interrupt request is made, write the transmit FIFO (write DR). If a receive FIFO
full interrupt request is made, read the receive FIFO (read DR).

7. The transfer ends when the serial master removes the select input to the DW_apb_ssi slave. When the
transfer is completed, the BUSY status is reset to 0.

8. If the transfer mode is not transmit only (TMOD != 01), read the receive FIFO until empty.

9. Disable the DW_apb_ssi by writing 0 to SSIENR.

https://solvnet.synopsys.com
www.designware.com

46 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-16 shows a typical software flow for a DW_apb_ssi slave SPI or SSP serial transfer. The diagram
also shows the hardware flow inside the serial-slave component.

Figure 2-16 DW_apb_ssi Slave SPI/SSP Transfer Flow

IDLE

Configure Slave
by writing CTRLR0.
CTRLR1, TXFTLR,

RXFTLR, MWCR, IMR

Transfer in
progress

Interrupt?

BUSY

Read Rx

FIFO

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent, then
write data into transmit

FIFO.
If the receive FIFO is
requesting, then read

data from receive FIFO.

Yes

No

Yes

No

Software Flow

IDLE

Pop data from Tx
FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

frame
transferred?

slave still
selected?

END

Yes Yes

TMOD = 01

TMOD = 10TMOD = 00
TMOD = 01

No

Wait for master
to select slave

Write data to
Tx FIFO

Enable
DW_apb_ssi

Disable
DW_apb_ssi

TMOD=01

TMOD=10
TMOD = 10

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 47SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.7.2.2 Slave Microwire Serial Transfers

“National Semiconductor Microwire” on page 54 describes the Microwire serial protocol in detail, including
timing diagrams and information on how data are structured in the transmit and receive FIFOs before and
after a serial transfer. When the DW_apb_ssi is configured as a slave device, the Microwire protocol
operates in much the same way as the SPI protocol. There is no decode of the control frame by the
DW_apb_ssi slave device.

2.8 Partner Connection Interfaces
The DW_apb_ssi can connect to any serial-master or serial-slave peripheral device using one of the
interfaces discussed in the following sections.

2.8.1 Motorola Serial Peripheral Interface (SPI)

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of
the serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase
(SCPH) and clock polarity (SCPOL) values. The data frame can be 4 to 16/32-bits (depending upon
SSI_MAX_XFER_SIZE) in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select
signal. The first data bit is captured by the master and slave peripherals on the first edge of the serial clock;
therefore, valid data must be present on the txd and rxd lines prior to the first serial clock edge.

Figure 2-17 shows a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown
for configuration parameters SCPOL = 0 and SCPOL = 1.

Figure 2-17 SPI Serial Format (SCPH = 0)

The following signals are illustrated in the timing diagrams in this section:

■ sclk_out – serial clock from DW_apb_ssi master (master configuration only)

■ sclk_in – serial clock from DW_apb_ssi slave (slave configuration only)

■ ss_0_n – slave select signal from DW_apb_ssi master (master configuration only)

■ ss_in_n – slave select input to the DW_apb_ssi slave

 4 - 32 bits

MSB LSB

MSB LSB

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

48 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

■ ss_oe_n – output enable for the DW_apb_ssi master/slave

■ txd – transmit data line for the DW_apb_ssi master/slave

■ rxd – receive data line for the DW_apb_ssi master/slave

Two different modes of continuous data transfers are supported when SCPH = 0; the selection of the
desired operation mode is done using the configuration of the SSI_SCPH0_SSTOGGLE parameter:

■ When SSI_SCPH0_SSTOGGLE is configured as True and CTRLR0. SSTE is set to 1, the DW_apb_ssi
toggles the slave select signal between frames and the serial clock is held to its default value while the
slave select signal is active; this operating mode is illustrated in Figure 2-18.

■ When SSI_SCPH0_SSTOGGLE is configured as True and CTRLR0. SSTE is set to 0 or when
SSI_SCPH0_SSTOGGLE is configured as False, the slave select signal stays low and the serial clock
runs continuously for the duration of the transfer; this operating mode is illustrated in Figure 2-19.

Figure 2-18 Serial Format Continuous Transfers (SCPH = 0) when SSI_SCPH0_SSTOGGLE = 1

Figure 2-19 Serial Format Continuous Transfers (SCPH=0) when SSI_SCPH0_SSTOGGLE = 0

When the configuration parameter SCPH = 1, both master and slave peripherals begin transmitting data on
the first serial clock edge after the slave select line is activated. The first data bit is captured on the second
(trailing) serial clock edge. Data are propagated by the master and slave peripherals on the leading edge of
the serial clock. During continuous data frame transfers, the slave select line may be held active-low until
the last bit of the last frame has been captured.

MSB MSBLSB LSB

sclk_out/in 0

sclk_out/in 1

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

LSB MSB

sclk_out/in 0

sclk_out/in 1

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

LSBMSB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 49SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-19 shows the timing diagram for the SPI format when the configuration parameter SCPH = 1.

Figure 2-20 SPI Serial Format (SCPH = 1)

Continuous data frames are transferred in the same way as single frames, with the MSB of the next frame
following directly after the LSB of the current frame. The slave select signal is held active for the duration of
the transfer.

Figure 2-21 shows the timing diagram for continuous SPI transfers when the configuration parameter
SCPH = 1.

Figure 2-21 SPI Serial Format Continuous Transfer (SCPH = 1)

There are four possible transfer modes on the DW_apb_ssi for performing SPI serial transactions; see
“Transfer Modes” on page 32. For transmit and receive transfers (transfer mode field (9:8) of the Control
Register 0 = 2'b00), data transmitted from the DW_apb_ssi to the external serial device is written into the
transmit FIFO. Data received from the external serial device into the DW_apb_ssi is pushed into the receive
FIFO.

 4 - 32 bits

MSB LSB

MSB LSB

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB

MSB LSB

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

LSB MSB

MSB LSB

LSB

https://solvnet.synopsys.com
www.designware.com

50 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-22 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on
completion of the transfer. In this example, two data words are transmitted from the DW_apb_ssi to the
external serial device in a continuous transfer. The external serial device also responds with two data words
for the DW_apb_ssi.

Figure 2-22 FIFO Status for Transmit & Receive SPI and SSP Transfers

For transmit only transfers (transfer mode field (9:8) of the Control Register 0 = 2'b01), data transmitted from
the DW_apb_ssi to the external serial device is written into the transmit FIFO. As the data received from the
external serial device is deemed invalid, it is not stored in the DW_apb_ssi receive FIFO.

Figure 2-23 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on
completion of the transfer. In this example, two data words are transmitted from the DW_apb_ssi to the
external serial device in a continuous transfer.

Write DR

NULL

NULL

Tx Data(1)

Tx Data(0)

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

Rx Data(1)

Rx Data(0)

location n

Tx FIFO Empty

location 2

location 1

location 0

location n

location 2

location 1

location 0

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 51SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-23 FIFO Status for Transmit Only SPI and SSP Transfers

For receive only transfers (transfer mode field (9:8) of the Control Register 0 = 2'b10), data transmitted from
the DW_apb_ssi to the external serial device is invalid, so a single dummy word is written into the transmit
FIFO to begin the serial transfer. The txd output from the DW_apb_ssi is held at a constant logic level for the
duration of the serial transfer. Data received from the external serial device into the DW_apb_ssi is pushed
into the receive FIFO.

Figure 2-24 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on
completion of the transfer. In this example, two data words are received by the DW_apb_ssi from the
external serial device in a continuous transfer.

Write DR

NULL

NULL

Tx Data(1)

Tx Data(0)

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 2

location 1

location 0

location n

location 2

location 1

location 0

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

https://solvnet.synopsys.com
www.designware.com

52 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-24 FIFO Status for Receive Only SPI and SSP Transfers

For eeprom_read transfers (transfer mode field [9:8] of the Control Register 0 = 2‘b11), opcode and/or
EEPROM address are written into the transmit FIFO. During transmission of these control frames, received
data is not captured by the DW_apb_ssi master. After the control frames have been transmitted, receive data
from the EEPROM is stored in the receive FIFO.

Figure 2-25 shows the FIFO levels prior to the beginning of a serial transfer and the FIFO levels on
completion of the transfer. In this example, one opcode and an upper and lower address are transmitted to
the EEPROM, and eight data frames are read from the EEPROM and stored in the receive FIFO of the
DW_apb_ssi master.

Write DR

NULL

NULL

NULL

Dummy Word

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

Rx Data(1)

Rx Data(0)

location n

Tx FIFO Empty

location 2

location 1

location 0

location n

location 2

location 1

location 0

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 53SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-25 FIFO Status for EEPROM Read Transfer Mode

2.8.2 Texas Instruments Synchronous Serial Protocol (SSP)

Data transfers begin by asserting the frame indicator line (ss_0_n/ss_in_n) for one serial clock period. Data
to be transmitted are driven onto the txd line one serial clock cycle later; similarly data from the slave are
driven onto the rxd line. Data are propagated on the rising edge of the serial clock (sclk_out/sclk_in) and
captured on the falling edge. The length of the data frame ranges from 4 to 16/32-bits (depending upon
SSI_MAX_XFER_SIZE).

Figure 2-26 shows the timing diagram for a single SSP serial transfer.

Figure 2-26 SSP Serial Format

Continuous data frames are transferred in the same way as single data frames. The frame indicator is
asserted for one clock period during the same cycle as the LSB from the current transfer, indicating that
another data frame follows.

Write DR

NULL

NULL

Address[7:0]

Address[15:8]

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

Rx_Data(7)

Rx Data(6)

Rx Data(1)

location n

Tx FIFO Empty

location 7

location 6

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer
Read DR

Rx FIFO Buffer

Opcode

Rx Data(0)location 0

location 0

MSB LSB

sclk_out/in

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

54 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-27 shows the timing for a continuous SSP transfer.

Figure 2-27 SSP Serial Format Continuous Transfer

2.8.3 National Semiconductor Microwire

When the DW_apb_ssi is configured as a serial master, data transmission begins with the falling edge of the
slave-select signal (ss_0_n). One-half serial clock (sclk_out) period later, the first bit of the control is sent out
on the txd line. The length of the control word can be in the range 1 to 16 bits and is set by writing bit field
CFS (bits 15:12) in CTRLR0. The remainder of the control word is transmitted (propagated on the falling
edge of sclk_out) by the DW_apb_ssi serial master. During this transmission, no data are present (high
impedance) on the serial master's rxd line.

The direction of the data word is controlled by the MDD bit field (bit 1) in the Microwire Control Register
(MWCR). When MDD=0, this indicates that the DW_apb_ssi serial master receives data from the external
serial slave. One clock cycle after the LSB of the control word is transmitted, the slave peripheral responds
with a dummy 0 bit, followed by the data frame, which can be 4 to 16/32-bits (depending upon
SSI_MAX_XFER_SIZE) in length. Data are propagated on the falling edge of the serial clock and captured
on the rising edge.

The slave-select signal is held active-low during the transfer and is de-asserted one-half clock cycle later,
after the data are transferred. Figure 2-28 shows the timing diagram for a single DW_apb_ssi serial master
read from an external serial slave.

Figure 2-28 Single DW_apb_ssi Master Microwire Serial Transfer (MDD=0)

MSB LSB

sclk_out/in

txd/rxd

ss_0_n/ss_in_n

ssi_oe_n

MSB

 4 - 16 bits 4 - 32 bits

 Control word

MSB LSB

MSB LSB0

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 55SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-29 shows how the data and control frames are structured in the transmit FIFO prior to the transfer;
the value programmed into the MWCR register is also shown.

Figure 2-29 FIFO Status for Single Microwire Transfer (Receiving Data Frame)

Continuous transfers fro the Microwire protocol can be sequential or nonsequential, and are controlled by
the MWMOD bit field (bit 0) in the MWCR register.

Nonsequential continuous transfers occur as illustrated in Figure 2-30, with the control word for the next
transfer following immediately after the LSB of the current data word.

Figure 2-30 Continuous Non-sequential Microwire Transfer (Receiving Data Frame)

Write DR

NULL

NULL

NULL

NULL

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

0 00MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

Rx Data(0)location 0

Data Word 1Data Word 1Data Word 0Data Word 0

Control Word 1Control Word 1 Control Word 0 Control Word 0

MSB LSB

MSB LSB0

MSB LSB

MSB LSB0

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

56 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

The only modification needed to perform a continuous nonsequential transfer is to write more control
words into the transmit FIFO buffer; this is illustrated in Figure 2-31. In this example, two data words are
read from the external serial-slave device.

Figure 2-31 FIFO Status for Non-sequential Microwire Transfer (Receiving Data Frame)

During sequential continuous transfers, only one control word is transmitted from the DW_apb_ssi master.
The transfer is started in the same manner as with non-sequential read operations, but the cycle is continued
to read further data. The slave device automatically increments its address pointer to the next location and
continues to provide data from that location. Any number of locations can be read in this manner; the
DW_apb_ssi master terminates the transfer when the number of words received is equal to the value in the
CTRLR1 register plus 1.

Write DR

NULL

NULL

NULL

Ctrl Word(1)

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

Rx Data(1)

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

0 00MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

Rx Data(0)location 0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 57SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

The timing diagram in Figure 2-32 and example in Figure 2-33 show a continuous sequential read of two
data frames from the external slave device.

Figure 2-32 Continuous Sequential Microwire Transfer (Receiving Data Frame)

Figure 2-33 FIFO Status for Sequential Microwire Transfer (Receiving Data Frame)

When MDD = 1, this indicates that the DW_apb_ssi serial master transmits data to the external serial slave.
Immediately after the LSB of the control word is transmitted, the DW_apb_ssi master begins transmitting
the data frame to the slave peripheral.

Data Word 1Data Word 0 Data Word 1Data Word 0

 Control Word 0 Control Word 0

MSB LSB

MSB LSB0 MSB LSB

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

Write DR

NULL

NULL

NULL

NULL

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

Rx Data(1)

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Read DR

Rx FIFO Buffer

0 10MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

Rx Data(0)location 0

https://solvnet.synopsys.com
www.designware.com

58 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-34 shows the timing diagram for a single DW_apb_ssi serial master write to an external serial slave.

Figure 2-34 Single Microwire Transfer (Transmitting Data Frame)

Figure 2-35 shows how the data and control frames are structured in the transmit FIFO prior to the transfer,
also shown is the value programmed into the MWCR register.

Figure 2-35 FIFO Status for Single Microwire Transfer (Transmitting Data Frame)

NoteNoteNoteNote The DW_apb_ssi does not support continuous sequential Microwire writes, where MDD = 1
and MWMOD = 1.

Data Word 0Data Word 0 Control Word 0 Control Word 0

MSB LSB LSBMSB

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

Write DR

NULL

NULL

NULL

Tx Data(0)

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Rx FIFO Buffer

0 01MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

NULLlocation 0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 59SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Continuous transfers occur as shown in Figure 2-36, with the control word for the next transfer following
immediately after the LSB of the current data word.

Figure 2-36 Continuous Microwire Transfer (Transmitting Data Frame)

The only modification you need to make to perform a continuous transfer is to write more control and data
words into the transmit FIFO buffer, shown in Figure 2-37. This example shows two data words are written
to the external serial slave device.

Figure 2-37 FIFO Status for Continuous Microwire Transfer (Transmitting Data Frame)

Data Word 1Data Word 1Control Word 1Control Word 1Data Word 0 Control Word 0 Control Word 0

MSB LSB LSBMSB MSB LSB MSB LSB

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

Write DR

NULL

Data Word(1)

Ctrl Word(1)

Tx Data(0)

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Rx FIFO Buffer

0 01MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

NULLlocation 0

https://solvnet.synopsys.com
www.designware.com

60 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

The Microwire handshaking interface can also be enabled for DW_apb_ssi master write operations to
external serial-slave devices. To enable the handshaking interface, you must write 1 into the MHS bit field
(bit 2) on the MWCR register. When MHS is set to 1, the DW_apb_ssi serial master checks for a ready status
from the slave device before completing the transfer, or transmitting the next control word for continuous
transfers.

Figure 2-38 shows an example of a continuous Microwire transfer with the handshaking interface enabled.

Figure 2-38 Continuous Microwire Transfer with Handshaking (Transmitting Data Frame)

After the first data word has been transmitted to the serial-slave device, the DW_apb_ssi master polls the
rxd input waiting for a ready status from the slave device. Upon reception of the ready status, the
DW_apb_ssi master begins transmission of the next control word. After transmission of the last data frame
has completed, the DW_apb_ssi master transmits a start bit to clear the ready status of the slave device
before completing the transfer. The FIFO status for this transfer is the same as in Figure 2-37, except that the
MWHS bit field is set (1).

To transmit a control word (not followed by data) to a serial-slave device from the DW_apb_ssi master,
there must be only one entry in the transmit FIFO buffer. It is impossible to transmit two control words in a
continuous transfer, as the shift logic in the DW_apb_ssi treats the second control word as a data word.
When the DW_apb_ssi master transmits only a control word, the MDD bit field (bit 1 of MWCR register)
must be set (1).

Data Word 1Control Word1Data Word 0

MSB LSB LSBMSB MSB LSB MSB LSB

Start Bit

Busy ReadyBusy Ready

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

 Control Word 0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 61SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

In the example shown in Figure 2-39 and in the timing diagram in Figure 2-40, the handshaking interface is
enabled. If the handshaking interface is disabled (MHS=0), the transfer is terminated by the DW_apb_ssi
master one sclk_out cycle after the LSB of the control word is captured by the slave device.

Figure 2-39 FIFO Status for Microwire Control Word Transfer

Figure 2-40 Microwire Control Word

When the DW_apb_ssi is configured as a serial slave, data transmission begins with the falling edge of the
slave select signal (ss_in_n). One-half serial clock (sclk_in) period later, the first bit of the control is present
on the rxd line. The length of the control word can be in the range of 1 to 16 bits and is set by writing bit field
CFS in the CTRLR0 register. The CFS bit field must be set to the size of the expected control word from the

Write DR

NULL

NULL

NULL

NULL

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Rx FIFO Buffer

1 01MWCR

MWHS MDD MWMOD

Ctrl Word(0)location 0

NULLlocation 0

Control Word 0Control Word 0

MSB LSB Start Bit

Busy Ready

sclk_out

txd

rxd

ss_0_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

62 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

serial master. The remainder of the control word is received (captured on the rising edge of sclk_in) by the
DW_apb_ssi serial slave. During this reception, no data are driven (high impedance) on the serial slave’s txd
line.

The direction of the data word is controlled by the MDD bit field (bit 1) MWCR register. When MDD=0, this
indicates that the DW_apb_ssi serial slave is to receive data from the external serial master. Immediately
after the control word is transmitted, the serial master begins to drives the data frame onto the DW_apb_ssi
slave rxd line. Data are propagated on the falling edge of the serial clock and captured on the rising edge.
The slave-select signal is held active-low during the transfer and is de-asserted one-half clock cycle later
after the data are transferred. The DW_apb_ssi slave output enable signal (ssi_oe_n) is held inactive for the
duration of the transfer.

Figure 2-41 shows the timing diagram for single DW_apb_ssi serial slave read from an external serial
master.

Figure 2-41 Single DW_apb_ssi Slave Microwire Serial Transfer (MDD=0)

 Control word

MSB LSB

sclk_in

txd

rxd

ss_in_n

ssi_oe_n

MSB LSB

 Data word

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 63SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-42 shows how the data and control frames are stored in the receive FIFO on completion of the
transfer; also shown is the value programmed into the MWCR register.

Figure 2-42 FIFO Status for Single Microwire Transfer (Receiving Data Frame)

When MDD=1, this indicates that the DW_apb_ssi serial slave transmits data to the external serial master.
Immediately after the LSB of the control word is transmitted, the DW_apb_ssi slave transmits a dummy 0
bit, followed by the 4- to 16/32-bit (depending upon SSI_MAX_XFER_SIZE) data frame on the txd line.

Figure 2-43 shows the timing diagram for a single DW_apb_ssi serial slave write to an external serial master.

Figure 2-43 Single DW_apb_ssi Slave Microwire Serial Transfer (MDD=1)

NULL

NULL

NULL

NULL

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

Rx Data(0)

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Rx FIFO Buffer

0 00MWCR

MWHS MDD MWMOD

NULLlocation 0

Ctrl Word(0)location 0

Read DR

 Control word

MSB LSB

sclk_in

txd

rxd

ss_in_n

ssi_oe_n

 Data Word

MSB LSB0

https://solvnet.synopsys.com
www.designware.com

64 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-44 FIFO Status for Single Microwire Transfer (Transmitting Data Frame)

Continuous transfers for a DW_apb_ssi slave occur in the same way as those specified for the DW_apb_ssi
master configuration. The DW_apb_ssi slave configuration does not support the handshaking interface, as
there is never a busy period.

2.8.4 Enhanced SPI Modes

DW_apb_ssi supports the dual, quad, and octal modes of SPI using the SSI_SPI_MODE configuration
parameter. The possible values for this parameter are Standard, Dual SPI, Quad SPI and Octal SPI modes.
When dual, quad, or octal mode is selected for this parameter, the width of txd, rxd and ssi_oe_n signals
change to 2, 4, or 8, respectively. Hence, the data is shifted out/in on more than one line, increasing the
overall throughput. All four combinations of the serial clock's polarity and phase are valid in this mode and
it works same as in normal SPI mode as described in “Motorola Serial Peripheral Interface (SPI)” on page 47.
Dual SPI, Quad or Octal SPI modes function similarly except for the width of txd, rxd and ssi_oe_n signals.
The mode of operation (write/read) can be selected using the CTRLR0.TMOD field.

The following sections describe the read and write operations in Dual SPI and Quad SPI modes in detail:

■ “Write Operation in Enhanced SPI Modes” on page 64

■ “Read Operation in Enhanced SPI Modes” on page 67

2.8.4.1 Write Operation in Enhanced SPI Modes

Dual, Quad, or Octal SPI write operations can be divided into three parts:

■ Instruction phase

■ Address phase

Reads DR

NULL

NULL

NULL

NULL

Rx FIFO Empty

Tx FIFO Buffer

txd

SHIFT
LOGIC

rxd

NULL

NULL

NULL

NULL

location n

Tx FIFO Empty

location 3

location 2

location 1

location n

location 3

location 2

location 1

FIFO Status Prior to Transfer FIFO Status on Completion of Transfer

Rx FIFO Buffer

0 01MWCR

MWHS MDD MWMOD

Tx Data(0)location 0

Ctrl Work(0)location 0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 65SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

■ Data phase

The following register fields are used for a write operation:

■ CTRLR0.SPI_FRF - Specifies the format in which the transmission happens for the frame.

■ SPI_CTRLR0 (Control Register 0 register) – Specifies length of instruction, address, and data.

■ SPI_CTRLR0.INST_L – Specifies length of an instruction (possible values for an instruction are 0, 4, 8,
or 16 bits.)

■ SPI_CTRLR0.ADDR_L – Specifies address length (See Table 2-3 for decode values)

■ CTRLR0.DFS or CTRLR0.DFS_32 – Specifies data length.

An instruction takes one FIFO location and address can take more than one FIFO locations. Both the
instruction and address must be programmed in the data register (DR). DW_apb_ssi waits until both have
been programmed to start the write operation.

The instruction, address and data can be programmed to send in dual/quad mode, which can be selected
from the SPI_CTRLR0.TRANS_TYPE and CTRLR0.SPI_FRF fields.

Figure 2-45 shows a typical write operation in Dual, Quad, or Octal SPI Mode. The value of N is: 7 if
SSI_SPI_MODE is set to 3, 3 if SSI_SPI_MODE is set to 2, and 1 if SSI_SPI_MODE is set to 1. For one write
operation, the instruction and address are sent only once followed by data frames programmed in DR until
the transmit FIFO becomes empty.

Figure 2-45 Typical Write Operation Dual/Quad/Octal SPI Mode

To initiate a Dual/Quad/Octal write operation, CTRLR0.SPI_FRF must be set to 01/10/11, respectively.
This sets the transfer type, and for each write command, data is transferred in the format specified in
CTLR0.SPI_FRF field.

Following are the possible cases of write operation in enhanced SPI modes

■ Case A: Instruction and address both transmitted in standard SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 00. Figure 2-46 show the timing diagram
when both instruction and address are transmitted in standard SPI format. The value of N is: 7 if
CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if CTRLR0.SPI_FRF is set to 01.

NoteNoteNoteNote
■ If CTRLR0.SPI_FRF is selected to be "Standard SPI Format", everything is

sent in Standard SPI mode and SPI_CTRLR0.TRANS_TYPE field is ignored.

■ CTRLR0.SPI_FRF is only applicable if CTRLR0.FRF is programmed to 00.

INSTRUCTION ADDRESS DATA

sclk_out

txd[N:0]

ssi_oe_n[N:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

66 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-46 Instruction and Address Transmitted in Standard SPI Format

■ Case B: Instruction transmitted in standard and address transmitted in Enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 01. Figure 2-47 shows the timing diagram
when an instruction is transmitted in standard format and address is transmitted in dual SPI format
specified in the CTRLR0.SPI_FRF field. The value of N is: 7 if CTRLR0.SPI_FRF is set to 11, 3 if
CTRLR0.SPI_FRF is set to 10, and 1 if CTRLR0.SPI_FRF is set to 01.

Figure 2-47 Instruction Transmitted in Standard and Address Transmitted in Enhanced SPI Format

■ Case C: Instruction and Address both transmitted in Enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10. Figure 2-48 shows the timing diagram in
which instruction and address are transmitted in SPI format specified in the CTRLR0.SPI_FRF field.
The value of N is: 7 if CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if
CTRLR0.SPI_FRF is set to 01.

Figure 2-48 Instruction and Address Both Transmitted in Enhanced SPI Format

DATA

INSTRUCTION ADDRESS DATA

sclk_out

txd[0]

txd[N-1:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

DATA

INSTRUCTION ADDRESS DATA

ADDRESS

sclk_out

txd[0]

txd[N-1:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

DATAADDRESSINSTRUCTION

sclk_out

txd[N:0]

ssi_oe_n[N:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 67SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

■ Case D: Instruction only transfer in enhanced SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10. Figure 2-49 shows the timing diagram for such
a transfer. The value of N is: 7 if CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if
CTRLR0.SPI_FRF is set to 01.

Figure 2-49 Instruction only transfer in enhanced SPI Format

2.8.4.2 Read Operation in Enhanced SPI Modes

A Dual, Quad, or Octal SPI read operation can be divided into four phases:

■ Instruction phase

■ Address phase

■ Wait cycles

■ Data phase

Wait Cycles can be programmed using SPI_CTRLR0.WAIT_CYCLES field. The value programmed into
SPI_CTRLR0.WAIT_CYCLES is mapped directly to sclk_out times. For example, WAIT_CYCLES=0
indicates no Wait, WAIT_CYCLES=1, indicates 1 wait cycle and so on. The wait cycles are introduced for
target slave to change their mode from input to output and the wait cycles can vary for different devices.

For a READ operation, DW_apb_ssi sends instruction and control data once and waits until it receives NDF
(CTRLR1 register) number of data frames and then de-asserts slave select signal.

Figure 2-50 shows a typical read operation in dual quad SPI mode. The value of N is: 7 if SSI_SPI_MODE is
set to Octal mode, 3 if SSI_SPI_MODE is set to Quad mode, and 1 if SSI_SPI_MODE is set to Dual mode.

Figure 2-50 Typical Read Operation in Enhanced SPI Mode

INSTRUCTION

sclk_out

txd[N:0]

ssi_oe_n[N:0]

ss_0_n

INSTRUCTION ADDRESS

DATA

WAIT CYCLES

sclk_out

txd[0]

rxd[N:0]

ssi_oe_n[N:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

68 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

To initiate a dual/quad/octal read operation, CTRLR0.SPI_FRF must be set to 01/10/11 respectively. This
sets the transfer type, now for each read command data is transferred in the format specified in
CTLR0.SPI_FRF field.

Following are the possible cases of write operation in enhanced SPI modes:

■ Case A: Instruction and address both transmitted in standard SPI format

For this, SPI_CTRLR0.TRANS_TYPE field should be set to 00. Figure 2-51 shows the timing diagram
when both instruction and address are transferred in standard SPI format. The figure also shows
WAIT cycles after address, which can be programmed in the SPI_CTRLR0.WAIT_CYCLES field. The
value of N is 7 if CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if
CTRLR0.SPI_FRF is set to 01.

Figure 2-51 Instruction and Address Transmitted in Standard SPI Format

■ Case B: Instruction transmitted in standard and address transmitted in dual SPI format

For this, SPI_CTRLR0.TRANS_TYPE field should be set to 01. Figure 2-52 shows the timing diagram
in which instruction is transmitted in standard format and address is transmitted in dual SPI format.
The value of N is 7 if CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if
CTRLR0.SPI_FRF is set to 01.

Figure 2-52 Instruction Transmitted in Standard and Address Transmitted in Enhanced SPI Format

INSTRUCTION ADDRESS

DATA

WAIT CYCLES

sclk_out

txd[0]

txd[N-1:0]

rxd[N:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

INSTRUCTION ADDRESS

DATA

ADDRESS

sclk_out

txd[0]

txd[N-1:0]

rxd[N:0]

ssi_oe_n[0]

ssi_oe_n[N-1:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 69SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

■ Case C: Instruction and Address both transmitted in Dual SPI format

For this, SPI_CTRLR0.TRANS_TYPE field must be set to 10. Figure 2-53 shows the timing diagram in
which both instruction and address are transmitted in dual SPI format. The value of N is: 7 if
CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if CTRLR0.SPI_FRF is set to 01.

Figure 2-53 Instruction and Address Transmitted in Enhanced SPI Format

■ Case D: No Instruction, No Address READ transfer

For this, SPI_CTRLR0.ADDR_L and SPI_CTRLR0.INST_L must be set to 0 and
SPI_CTRLR0.WAIT_CYCLES must be set to a non-zero value. Table 2-3 lists the ADDR_L decode value and
the respective description for enhanced (Dual/Quad/Octal) SPI modes.

Table 2-3 ADDR_L Decode in Enhanced SPI Mode

ADDR_L

Decode Value Description

0000 0-bit Address Width

0001 4-bit Address Width

0010 8-bit Address Width

0011 12-bit Address Width

0100 16-bit Address Width

0101 20-bit Address Width

0110 24-bit Address Width

0111 28-bit Address Width

1000 32-bit Address Width

1001 36-bit Address Width

1010 40-bit Address Width

1011 44-bit Address Width

1100 48-bit Address Width

INSTRUCTION ADDRESS

DATA

sclk_out

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

70 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-54 shows the timing diagram for such type of transfer. The value of N is: 7 if CTRLR0.SPI_FRF is
set to 11, 3 if CTRLR0.SPI_FRF is set to 10, and 1 if CTRLR0.SPI_FRF is set to 01. To initiate this transfer, the
software has to perform a dummy write in the data register (DR), DW_apb_ssi waits for programmed wait
cycles and then fetch the amount of data specified in NDF field.

Figure 2-54 No Instruction and No Address READ Transfer

2.8.4.3 Advanced I/O Mapping for Enhanced SPI Modes

The Input/Output mapping for enhanced SPI modes (dual, quad, and octal) is configurable using the
SSI_IO_EN parameter, which configures whether the I/O mapping of a slave device is hardcoded inside the
DW_apb_ssi. When SSI_IO_MAP_EN is set to 1, the rxd[1] signal is used to sample incoming data in
standard SPI mode of operation.

For other protocols (such as SSP and Microwire), the I/O mapping remains the same. Therefore, it is easy
for other protocols to connect with any device that supports Dual/Quad SPI operation because other
protocols do not require a multiplex logic to exist outside the design.

Figure 2-55 shows the I/O mapping of DW_apb_ssi in Quad mode with another SPI device that supports
the Quad mode. As illustrated in Figure 2-55, the IO[1] pin is used as DO in standard SPI mode of operation
and it is connected to rxd[1] pin, which is sampling the input in the standard mode of operation.

1101 52-bit Address Width

1110 56-bit Address Width

1111 60-bit Address Width

ADDR_L

Decode Value Description

WAIT CYCLES

DATA

sclk_out

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

ss_0_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 71SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-55 Advanced I/O Mapping in Quad SPI Modes

2.8.5 Dual Data-Rate (DDR) Support in SPI Operation

In standard operations, data transfer in SPI modes occur on either the positive or negative edge of the clock.
For improved throughput, the dual data-rate transfer can be used for reading or writing to the memories.

The DDR mode supports the following modes of SPI protocol:

■ SCPH=0 & SCPOL=0 (Mode 0)

■ SCPH=1 & SCPOL=1 (Mode 3)

DDR commands enable data to be transferred on both edges of clock. Following are the different types of
DDR commands:

■ Address and data are transmitted (or received in case of data) in DDR format, while instruction is
transmitted in standard format.

■ Instruction, address, and data are all transmitted or received in DDR format.

The DDR_EN (SPI_CTRLR0[16]) bit is used to determine if the Address and data have to be transferred in
DDR mode and INST_DDR_EN (SPI_CTRLR0[17]) bit is used to determine if Instruction must be
transferred in DDR format. These bits are only valid when the CTRLR0.SPI_FRF bit is set to be in Dual,
Quad or Octal mode.

Figure 2-56 describes a DDR write transfer where instructions are continued to be transmitted in standard
format. In Figure 2-56, the value of N is 7 if CTRLR0.SPI_FRF is set to 11, 3 if CTRLR0.SPI_FRF is set to 10,
and 1 if CTRLR0.SPI_FRF is set to 01.

txd[3]

rxd[3]

txd[2]

rxd[2]

txd[1]

rxd[1]

txd[0]

rxd[0]

DW_apb_ssi

IO Buffer IO[3]

IO[2]

IO[1]/DO

IO[0]/DI

SPI Slave Device

IO Buffer

IO Buffer

IO Buffer

https://solvnet.synopsys.com
www.designware.com

72 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-56 DDR Transfer with SCPH=0 and SCPOL=0

Figure 2-57 describes a DDR write transfer where instruction, address and data all are transferred in DDR
format.

Figure 2-57 DDR Transfer with Instruction, Address and Data Transmitted in DDR Format

2.8.5.1 Transmitting Data in DDR Mode

In DDR mode, data is transmitted on both edges so that it is difficult to sample data correctly. DW_apb_ssi
uses an internal register to determine the edge on which the data should be transmitted. This ensures that
the receiver is able to get a stable data while sampling. The internal register (DDR_DRIVE_EDGE)
determines the edge on which the data is transmitted. DW_apb_ssi sends data with respect to baud clock,
which is an integral multiple of the internal clock (ssi_clk * BAUDR). The data needs to be transmitted
within half clock cycle (BAUDR/2), therefore the maximum value for DDR_DRIVE_EDGE is equal to
[(BAUDR/2)-1]. If the programmed value of DDR_DRIVE_EDGE is 0 then data is transmitted edge-aligned
with respect to sclk_out (baud clock). If the programmed value of DDR_DRIVE_EDGE is 1 then the data is
transmitted one ssi_clk before the edge of sclk_out.

NoteNoteNoteNote In the DDR transfer, address and instruction cannot be programmed to a value of 0

NoteNoteNoteNote If the baud rate is programmed to be 2, then the data is always edge aligned.

INST A3 A2 A0A1 D3 D0D1D2

INST = Instruction Phase
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

INST - 1 A2 A0A1 D3 D0D1D2

INST-1,INST-2 = Instruction Bytes
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

INST -2 A3

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 73SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-58, Figure 2-59, and Figure 2-60 show examples of how data is transmitted using different values of
the DDR_DRIVE_EDGE register. The green arrows in these examples represent the points where data is
driven. Baud rate used in all these examples is 12. In Figure 2-58, transmit edge and driving edge of the data
are the same. This is default behavior in DDR mode.

Figure 2-58 Transmit Data With DDR_DRIVE_EDGE = 0

Figure 2-58 shows the default behavior in which the transmit and driving edge of the data is the same.

Figure 2-59 Transmit Data With DDR_DRIVE_EDGE = 1

INST A3 A2 A0A1 D3 D0D1D2

INST = Instruction Phase
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

ssi_clk

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

INST A3 A2 A0A1 D3 D0D1D2

INST = Instruction Phase
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

ssi_clk

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

https://solvnet.synopsys.com
www.designware.com

74 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Figure 2-60 Transmit Data With DDR_DRIVE_EDGE = 2

2.8.6 Read Data Strobe Signal Support

To achieve high frequency, data strobe signaling is used in read operations. The device provides a data
strobe, known as read data strobe (rxds), signal along with read data, which determines the output data
valid window. The data is edge aligned with respect to the rxds signal.

DW_apb_ssi provides the SSI_HAS_RXDS configurable parameter to include the data strobe signal. When
SSI_HAS_RXDS is set to 1, you must the SPI_CTRLR0.RXDS_EN register to 1 to sample incoming data with
respect to the read data strobe signal. If you do not set the SPI_CTRLR0.RXDS_EN signal to 1, the data is
sampled based on the existing logic.

2.8.6.1 Design for Test

When SS_HAS_RXDS is set to 1, then rxds is used to capture data on both the edges. One of the internal
shifter uses negative edge of the rxds signal to capture the data on the rxd line. During scan testing, these
flops may remain uncovered. Therefore, you must connect scan_mode to chip-level scan mode. During scan
mode (scan_mode =1), the clock input for these flip-flops is connected to ssi_clk, rather than rxds which
leaves the register testable and subsequent downstream points controllable.

2.8.7 XIP Mode Support in SPI Mode

The eXecute In Place (XIP) mode enables transfer of SPI data directly through the APB interface without
writing the data register of DW_apb_ssi. XIP mode can be enabled in DW_apb_ssi by selecting the
SSI_XIP_EN configuration parameter, which includes an extra sideband signal xip_en, on the APB interface.
This signal indicates whether APB transfers are register read-write or XIP reads. If the xip_en signal is
driven to 1, DW_apb_ssi expects only read request on the APB interface. This request is translated to SPI
read on the serial interface and soon after the data is received, the data is returned to the APB interface in
the same transaction.

NoteNoteNoteNote The data must be stable around the clock edge of the data strobe signal while
sampling on both edges.

INST A3 A2 A0A1 D3 D0D1D2

INST = Instruction Phase
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

ssi_clk

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 75SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

The paddr signal is used to derive the address to be sent on the XIP interface. The address length is derived
from the SPI_CTRLR0.ADDR_L field, and relevant bits from paddr ([SPI_CTRLR0.ADDR_L-1:0]) are
transferred as address to the SPI interface.

2.8.7.1 Read Operation in XIP Mode

The XIP operation is supported only in enhanced SPI modes (Dual, Quad, and Octal) of operation.
Therefore, the CTRLR0.SPI_FRF bit should not be programmed to 0. An XIP read operation is divided into
two phases:

■ Address phase

■ Data phase

For an XIP read operation

1. Set the SPI frame format and data frame size value in CTRLR0 register. Note that the value of the
maximum data frame size is equal to the APB_DATA_WIDTH parameter.

2. Set the Address length, Wait cycles, and transaction type in the SPI_CTRLR0 register. Note that the
maximum address length is 32.

After these settings, you can initiate a read transaction through the APB interface which is transferred to SPI
peripheral using programmed values. Figure 2-61 shows the typical XIP transfer. The Value of N = 1, 3 and
7 for SPI mode Dual, Quad and Octal modes, respectively.

Figure 2-61 Typical Read Operation in XIP Mode

NoteNoteNoteNote
■ XIP mode can be enabled only when APB interface type is set to APB 3.0 and only APB

reads are supported during an XIP operation

■ The xip_en signal must be driven HIGH one cycle before any read is initiated on the APB
interface.

0x00

D1

0X00

D1

pclk

xip_en

psel

penable

paddr

pready

prdata[31:0]

ss_x_n

sclk_out

txd[7:0]

rxd[7:0]

https://solvnet.synopsys.com
www.designware.com

76 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

2.8.8 Data Mask Support for SPI

During any data transfer, if you want to selectively update the data bytes in the memory, and mask some
bytes, DW_apb_ssi provides the txd_dm signals to mask the data on the txd line. The output enable bit for
the data mask pin is txd_dm_oe_n, which is used to enable txd_dm. The data mask pin is only used when
DW_apb_ssi is performing WRITE transaction to a memory in enhanced SPI formats (Dual/Quad/Octal).
The SSI_SPI_DM_EN parameter is used to include data mask signal on DW_apb_ssi interface.

For read transfers, the txd_dm_oe_n signal remains HIGH for the entire transfer. you can mask the data
bytes while writing in the data register (DR) of DW_apb_ssi by using the pstrb signal. A pstrb signal is
mapped to txd_dm and transmitted during the data phase.

Figure 2-62 represents an example usage of the data mask signal in extended SPI DDR transfer. The data
byte D2 is being masked in this transfer by asserting the txd_dm signal.

Figure 2-62 Data Mask Signal Usage Example

2.9 DMA Controller Interface
The DW_apb_ssi has optional built-in DMA capability which can be selected at configuration time; it has a
handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform
the data transfer to or from the DMA. While the DW_apb_ssi DMA operation is designed in a generic way
to fit any DMA controller as easily as possible, it is designed to work seamlessly, and best used, with the
DesignWare DMA Controller, the DW_ahb_dmac. The settings of the DW_ahb_dmac that are relevant to
the operation of the DW_apb_ssi are discussed here, mainly bit fields in the DW_ahb_dmac channel control
register, CTLx, where x is the channel number.

NoteNoteNoteNote When the DW_apb_ssi interfaces to the DW_ahb_dmac, the DW_ahb_dmac is always a flow
controller; that is, it controls the block size. This must be programmed by software in the
DW_ahb_dmac. The DW_ahb_dmac always transfers data using DMA burst transactions if
possible, for efficiency. For more information, see the DesignWare DW_ahb_dmac Databook.
Other DMA controllers act in a similar manner.

INST - 1 A2 A0A1 D3 D0D1D2

INST-1,INST-2 = Instruction Bytes
A3,A2,A1,A0 - Address Bytes
D3,D2,D1,D0 - Data Bytes

INST -2 A3

sclk_out

ss_0_n

txd[N:0]

rxd[N:0]

ssi_oe_n[N:0]

txd_dm

txd_dm_oe_n

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_dmac_databook.pdf
https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 77SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

The DW_apb_ssi uses two DMA channels, one for the transmit data and one for the receive data. The
DW_apb_ssi has these DMA registers:

■ DMACR – Control register to enable DMA operation.

■ DMATDLR – Register to set the transmit the FIFO level at which a DMA request is made.

■ DMARDLR – Register to set the receive FIFO level at which a DMA request is made.

The DW_apb_ssi uses the following handshaking signals to interface with the DMA controller.

■ dma_tx_req

■ dma_tx_single

■ dma_tx_ack

■ dma_rx_req

■ dma_rx_single

■ dma_rx_ack

For more information about these signals, see “Signal Descriptions” on page 103. They are discussed further
in the “Handshaking Interface Operation” on page 84.

The DMA output dma_finish is a status signal to indicate that the DMA block transfer is complete; for more
information on the dma_finish signal, see the Signals chapter in the DesignWare DW_ahb_dmac Databook. The
DW_apb_ssi does not use this status signal, and therefore it does not appear in the I/O signal list.

To enable the DMA Controller interface on the DW_apb_ssi, you must write the DMA Control Register
(DMACR). Writing a 1 into the TDMAE bit field of DMACR register enables the DW_apb_ssi transmit
handshaking interface. Writing a 1 into the RDMAE bit field of the DMACR register enables the
DW_apb_ssi receive handshaking interface.

Table 2-4 provides description for different DMA transmit data level values.

Table 2-4 DMA Transmit Data Level (DMATDL) Decode Value

DMATDL Value Description

0000_0000 dma_tx_req is asserted when 0 data entries are present in the transmit FIFO

0000_0001 dma_tx_req is asserted when 1 or less data entry is present in the transmit FIFO

0000_0010 dma_tx_req is asserted when 2 or less data entries are present in the transmit FIFO

0000_0011 dma_tx_req is asserted when 3 or less data entries are present in the transmit FIFO

... ...

... ...

1111_1100 dma_tx_req is asserted when 252 or less data entries are present in the transmit FIFO

1111_1101 dma_tx_req is asserted when 253 or less data entries are present in the transmit FIFO

1111_1110 dma_tx_req is asserted when 254 or less data entries are present in the transmit FIFO

https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_dmac_databook.pdf
https://solvnet.synopsys.com
www.designware.com
https://www.synopsys.com/dw/doc.php/iip/DW_ahb/latest/doc/DW_ahb_dmac_databook.pdf

78 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Table 2-5 provides description for different DMA Receive Data Level values.

Table 2-5 DMA Receive Data Level (DMARDL) Decode Value

2.9.1 Overview of Operation

As a block flow control device, the DMA Controller is programmed by the processor with the number of
data items (block size) that are to be transmitted or received by the DW_apb_ssi; this is programmed into
the BLOCK_TS field of the CTLx register.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_ssi. The
DMA Controller must also be programmed with the number of data items (in this case, DW_apb_ssi FIFO
entries) to be transferred for each DMA request. This is also known as the burst transaction length, and is
programmed into the SRC_MSIZE/DEST_MSIZE fields of the DW_ahb_dmac CTLx register for source and
destination, respectively.

1111_1111 dma_tx_req is asserted when 255 or less data entries are present in the transmit FIFO

DMARDL Value Description

0000_0000 dma_rx_req is asserted when 1 or more data entries are present in the receive FIFO

0000_0001 dma_rx_req is asserted when 2 or more data entries are present in the receive FIFO

0000_0010 dma_rx_req is asserted when 3 or more data entries are present in the receive FIFO

0000_0011 dma_rx_req is asserted when 4 or more valid data entries are present in the receive FIFO

... ...

... ...

1111_1100 dma_rx_req is asserted when 253 or more data entries are present in the receive FIFO

1111_1101 dma_rx_req is asserted when 254 or more data entries are present in the receive FIFO

1111_1110 dma_rx_req is asserted when 255 or more data entries are present in the receive FIFO

1111_1111 dma_rx_req is asserted when 256 data entries are present in the receive FIFO

DMATDL Value Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 79SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-63 shows a single block transfer, where the block size programmed into the DMA Controller is 12
and the burst transaction length is set to 4. In this case, the block size is a multiple of the burst transaction
length; therefore, the DMA block transfer consists of a series of burst transactions.

Figure 2-63 Breakdown of DMA Transfer into Burst Transactions

If the DW_apb_ssi makes a transmit request to this channel, four data items are written to the DW_apb_ssi
transmit FIFO. Similarly, if the DW_apb_ssi makes a receive request to this channel, four data items are read
from the DW_apb_ssi receive FIFO. Three separate requests must be made to this DMA channel before all
12 data items are written or read.

NoteNoteNoteNote The source and destination transfer width settings in the DW_ahb_dmac –
DMA.CTLx.SRC_TR_WIDTH and DMA.CTLx.DEST_TR_WIDTH – should be set to 3’b001
because the DW_apb_ssi FIFOs are 16 bits wide.

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

ock Size: DMA.CTLx.BLOCK_TS=12
umber of data items per source burst transaction: DMA.CTLx.SRC_MSIZE = 4
SI receive FIFO watermark level: SSI.DMARDLR + 1 = DMA.CTLx.SRC_MSIZE = 4
 (for more information, see discussion on page 83)

https://solvnet.synopsys.com
www.designware.com

80 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

When the block size programmed into the DMA Controller is not a multiple of the burst transaction length,
as shown in Figure 2-64, a series of burst transactions followed by single transactions are needed to
complete the block transfer.

Figure 2-64 Breakdown of DMA Transfer into Single and Burst Transactions

2.9.2 Transmit Watermark Level and Transmit FIFO Underflow

During DW_apb_ssi serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the transmit FIFO is less than or equal to the DMA Transmit Data Level Register
(DMATDLR) value; this is known as the watermark level. The DW_ahb_dmac responds by writing a burst
of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers
continuously; that is, when the FIFO begins to empty another DMA request should be triggered. Otherwise
the FIFO runs out of data (underflow). To prevent this condition, you must set the watermark level
correctly.

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

ock Size: DMA.CTLx.BLOCK_TS=15
umber of data items per burst transaction: DMA.CTLx.DEST_MSIZE = 4
SI transmit FIFO watermark level: SSI.DMATDLR = DMA.CTLx.DEST_MSIZE = 4
 (for more information, see discussion on page 82)

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 81SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.9.3 Choosing the Transmit Watermark Level

Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - SSI.DMATDLR

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the Transmit
FIFO. Consider two different watermark level settings.

2.9.3.1 Case 1: DMATDLR = 2

Figure 2-65 Case 1 Watermark Levels

■ Transmit FIFO watermark level = SSI.DMATDLR = 2

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - SSI.DMATDLR = 6

■ SSI transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DMA block transfer is 5. But the watermark level, SSI.DMATDLR, is
quite low. Therefore, the probability of an SSI underflow is high where the SSI serial transmit line needs to
transmit data, but where there is no data left in the transmit FIFO. This occurs because the DMA has not had
time to service the DMA request before the transmit FIFO becomes empty.

2.9.3.2 Case 2: DMATDLR = 6

Figure 2-66 Case 2 Watermark Levels

FIFO_DEPTH = 8

SSI.DMATDLR = 2

FIFO_DEPTH - SSI.DMATDLR = 6

FULL

EMPTY

SSI Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

FIFO_DEPTH = 8 SSI.DMATDLR = 6

FIFO_DEPTH - SSI.DMATDLR = 2

FULL

EMPTY

SSI Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

https://solvnet.synopsys.com
www.designware.com

82 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

■ Transmit FIFO watermark level = SSI.DMATDLR = 6

■ DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - SSI.DMATDLR = 2

■ SSI transmit FIFO_DEPTH = 8

■ DMA.CTLx.BLOCK_TS = 30

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

In this block transfer, there are 15 destination burst transactions in a DMA block transfer. But the watermark
level, SSI.DMATDLR, is high. Therefore, the probability of an SSI underflow is low because the DMA
controller has plenty of time to service the destination burst transaction request before the SSI transmit FIFO
becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions per
block. This provides a potentially greater amount of AMBA bursts per block and worse bus utilization than
the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block, while
at the same time keeping the probability of an underflow condition to an acceptable level. In practice, this is
a function of the ratio of the rate at which the SSI transmits data to the rate at which the DMA can respond
to destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the DMA
master interface to the highest priority master in the AMBA layer, increases the rate at which the DMA
controller can respond to burst transaction requests. This in turn allows you to decrease the watermark
level, which improves bus utilization without compromising the probability of an underflow occurring.

2.9.4 Selecting DEST_MSIZE and Transmit FIFO Overflow

As can be seen from Figure 2-66, programming DMA.CTLx.DEST_MSIZE to a value greater than the
watermark level that triggers the DMA request may cause overflow when there is not enough space in the
SSI transmit FIFO to service the destination burst request. Therefore, the following equation must be
adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= SSI.FIFO_DEPTH - SSI.DMATDLR (1)

In Case 2: DMATDLR = 6, the amount of space in the transmit FIFO at the time the burst request is made is
equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit FIFO may be full, but
not overflowed, at the completion of the burst transaction.

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that triggers a
transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = SSI.FIFO_DEPTH - SSI.DMATDLR (2)

This is the setting used in Figure 2-64.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in turn
improves AMBA bus utilization.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 83SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

2.9.5 Receive Watermark Level and Receive FIFO Overflow

During DW_apb_ssi serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever the
number of entries in the receive FIFO is at or above the DMA Receive Data Level Register; that is,
DMARDLR+1. This is known as the watermark level. The DW_ahb_dmac responds by fetching a burst of
data from the receive FIFO buffer of length CTLx.SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the FIFO
fills with data (overflow). To prevent this condition, you must correctly set the watermark level.

2.9.6 Choosing the Receive Watermark Level

Similar to choosing the transmit watermark level described earlier, the receive watermark level,
DMARDLR+1, should be set to minimize the probability of overflow, as shown in Figure 2-67. It is a
tradeoff between the number of DMA burst transactions required per block versus the probability of an
overflow occurring.

Figure 2-67 SSI Receive FIFO

2.9.7 Selecting SRC_MSIZE and Receive FIFO Underflow

As seen in Figure 2-67, programming a source burst transaction length greater than the watermark level
may cause underflow when there is not enough data to service the source burst request. Therefore,
equation (3) below must be adhered to avoid underflow.

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed, at the
completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be set at the
watermark level; that is:

DMA.CTLx.SRC_MSIZE = SSI.DMARDLR + 1 (3)

Adhering to equation (3) reduces the number of DMA bursts in a block transfer, and this in turn can
improve AMBA bus utilization.

NoteNoteNoteNote The transmit FIFO is not full at the end of a DMA burst transfer if the SSI has successfully
transmitted one data item or more on the SSI serial transmit line during the transfer.

SSI.DMARDLR + 1FULL

EMPTY

SSI Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

https://solvnet.synopsys.com
www.designware.com

84 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

2.9.8 Handshaking Interface Operation

The following sections discuss the DW_apb_ssi handshaking interface.

2.9.8.1 dma_tx_req, dma_rx_req

The request signals for source and destination, dma_tx_req and dma_rx_req, are activated when their
corresponding FIFOs reach the watermark levels as discussed earlier.

The DW_ahb_dmac uses rising-edge detection of the dma_tx_req signal/dma_rx_req to identify a request
on the channel. Upon reception of the dma_tx_ack/dma_rx_ack signal from the DW_ahb_dmac to indicate
the burst transaction is complete, the DW_apb_ssi de-asserts the burst request signals,
dma_tx_req/dma_rx_req, until dma_tx_ack/dma_rx_ack is de-asserted by the DW_ahb_dmac.

When the DW_apb_ssi samples that dma_tx_ack/dma_rx_ack is de-asserted, it can re-assert the
dma_tx_req/dma_rx_req of the request line if their corresponding FIFOs exceed their watermark levels
(back-to-back burst transaction). If this is not the case, the DMA request lines remain de-asserted.

Figure 2-68 shows a timing diagram of a burst transaction where pclk = hclk.

Figure 2-68 Burst Transaction – pclk = hclk

Figure 2-69 shows two back-to-back burst transactions where the hclk frequency is twice the pclk frequency.

Figure 2-69 Back-to-Back Burst Transactions – hclk = 2*pclk

NoteNoteNoteNote The receive FIFO is not empty at the end of the source burst transaction if the SSI has
successfully received one data item or more on the SSI serial receive line during the burst.

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req

dma_tx_ack

dma_tx_single not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req

dma_rx_ack

dma_rx_single not sampled by the DW_ahb_dmac for burst transactions

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 85SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

The handshaking loop is as follows:

dma_tx_req/dma_rx_req asserted by DW_apb_ssi

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req de-asserted by DW_apb_ssi

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac

-> dma_tx_req/dma_rx_req re-asserted by DW_apb_ssi, if back-to-back transaction is required

Two things to keep in mind:

■ The burst request lines, dma_tx_req signal/dma_rx_req, once asserted remain asserted until their
corresponding dma_tx_ack/dma_rx_ack signal is received even if the respective FIFO’s drop below
their watermark levels during the burst transaction.

■ The dma_tx_req/dma_rx_req signals are de-asserted when their corresponding
dma_tx_ack/dma_rx_ack signals are asserted, even if the respective FIFOs exceed their watermark
levels.

2.9.8.2 dma_tx_single, dma_rx_single

The dma_tx_single signal is asserted when there is at least one free entry in the transmit FIFO, and is cleared
when the dma_tx_ack signal is active. The dma_tx_single signal is re-asserted when the dma_tx_ack signal
is de-asserted, if the condition for setting still holds true.

The dma_rx_single signal is asserted when there is at least one valid data entry in the receive FIFO, and is
cleared when the dma_rx_ack signal is active. The dma_rx_single signal is re-asserted when the dma_rx_ack
signal is de-asserted, if the condition for setting still holds true.

These signals are needed by only the DW_ahb_dmac for the case where the block size, CTLx.BLOCK_TS,
that is programmed into the DW_ahb_dmac is not a multiple of the burst transaction length,
CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 2-64. In this case, the DMA single outputs
inform the DW_ahb_dmac that it is still possible to perform single data item transfers, so it can access all
data items in the transmit/receive FIFO and complete the DMA block transfer. The DMA single outputs
from the DW_apb_ssi are not sampled by the DW_ahb_dmac otherwise. This is illustrated in the following
example.

Consider first an example where the receive FIFO channel of the DW_apb_ssi is as follows:

DMA.CTLx.SRC_MSIZE = SSI.DMARDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 12

NoteNoteNoteNote The burst transaction request signals, dma_tx_req and dma_rx_req, are generated in the
DW_apb_ssi off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge signals,
dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac off hclk and sampled in
the DW_apb_ssi of pclk. The handshaking mechanism between the DW_ahb_dmac and the
DW_apb_ssi supports quasi-synchronous clocks; that is, hclk and pclk must be
phase-aligned, and the hclk frequency must be a multiple of the pclk frequency.

https://solvnet.synopsys.com
www.designware.com

86 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

For the example in Figure 2-63, with the block size set to 12, the dma_rx_req signal is asserted when four
data items are present in the receive FIFO. The dma_rx_req signal is asserted three times during the
DW_apb_ssi serial transfer, ensuring that all 12 data items are read by the DW_ahb_dmac. All DMA
requests read a block of data items and no single DMA transactions are required. This block transfer is made
up of three burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = SSI.DMARDLR + 1 = 4

DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using 3 burst transactions. But when the last
three data frames enter the receive FIFO, the dma_rx_req signal is not activated because the FIFO level is
below the watermark level. The DW_ahb_dmac samples dma_rx_single and completes the DMA block
transfer using three single transactions. The block transfer is made up of three burst transactions followed
by three single transactions.

Figure 2-70 shows a single transaction.

Figure 2-70 Single Transaction

The handshaking loop is as follows:

dma_tx_single/dma_rx_single asserted by DW_apb_ssi

-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac

-> dma_tx_single/dma_rx_single de-asserted by DW_apb_ssi

-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac.

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req

dma_rx_ack

dma_rx_single

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 87SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

Figure 2-71 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 2-71 Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

2.10 APB Interface
The host processor accesses data, control, and status information on the DW_apb_ssi through the APB
interface. The DW_apb_ssi supports APB data bus widths of 8, 16, and 32 bits. APB accesses to the
DW_apb_ssi peripheral are described in the following subsections.

2.10.1 Control and Status Register APB Access

Control and status registers within the DW_apb_ssi are byte-addressable. The maximum width of the
control or status register in the DW_apb_ssi is 16 bits. Therefore, if the APB data bus is 16 or 32 bits wide, all
read and write operations to the DW_apb_ssi control and status registers require only one APB access.
When the APB data bus width is 8 bits, you may independently write to the lower byte lane [7:0] of a
register by accessing the base address of the register. The upper byte lane [15:8] can be accessed by
addressing the register base address + 1.

2.10.2 Data Register APB Access

The data register (DR) within the DW_apb_ssi is 16/32-bits wide (depending upon SSI_MAX_XFER_SIZE)
in order to remain consistent with the maximum serial transfer size (data frame). An APB write operation to
DR moves data from pwdata into the transmit FIFO buffer. An APB read operation from DR moves data
from the receive FIFO buffer onto prdata. There are two possible configurations of the DR register.

2.10.2.1 SSI_MAX_XFER_SIZE = 16

When the APB data bus is 8 bits wide, you must perform two APB accesses to write or read to and from this
register. When data are written to the DW_apb_ssi DR, the lower byte [7:0] is stored in an intermediate 8-bit
register. Only when the second APB write occurs are the 16 bits of data loaded into the DW_apb_ssi
transmit FIFO buffer. When data are read from the DW_apb_ssi DR, the upper byte [15:8] is stored in an

NoteNoteNoteNote The single transaction request signals, dma_tx_single and dma_rx_single, are generated in
the DW_apb_ssi on the pclk edge and sampled in DW_ahb_dmac on hclk. The acknowledge
signals, dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac on the hclk edge
hclk and sampled in the DW_apb_ssi on pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_ssi supports quasi-synchronous clocks; that is, hclk and
pclk must be phase aligned and the hclk frequency must be a multiple of pclk frequency.

hclk

pclk

dma_tx_req

dma_tx_ack

dma_tx_single

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

https://solvnet.synopsys.com
www.designware.com

88 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

intermediate 8-bit register. The lower byte [7:0] is returned on the first APB read, and the stored upper byte
[15:8] is returned on the second APB read.

When the APB data bus is 16 bits wide, the DW_apb_ssi DR can be written or read in one APB access. This is
the optimal configuration because the full bandwidth of the bus is utilized when accessing this peripheral.
When the APB data bus is 32 bits wide, the DW_apb_ssi DR can be written or read in one APB access. It is
impossible to write or read two 16-bit FIFO entries in a single 32-bit APB access. Therefore, only half of the
APB bus bandwidth is utilized when accessing DW_apb_ssi from a 32-bit APB bus.

2.10.2.2 SSI_MAX_XFER_SIZE = 32

When the APB data bus is 8 bits wide, you must perform four APB accesses to write or read to/from this
register. When data is written to the DW_apb_ssi DR, the first three bytes (byte [7:0], byte [15:8], byte
[23:16]) are stored in three intermediate 8-bit registers. Only when the fourth APB write occurs are the
32 bits of data loaded into the DW_apb_ssi transmit FIFO buffer. When data is read from the DW_apb_ssi
DR, the three upper bytes (byte [31:24], byte [23:16],byte [15:8]) are stored in three intermediate 8-bit
registers. The lower byte [7:0] is returned on the first APB read, and the rest of the bytes (byte [31:24], byte
[23:16], byte [15:8]) are transferred on each APB read.

When the APB data bus is 16 bits wide, you must perform two APB accesses to write or read to/from this
register. When data is written to the DW_apb_ssi DR, the lower word [15:0] is stored in an intermediate
16-bit register. Only when the second APB write occurs are the 32 bits of data loaded into the DW_apb_ssi
transmit FIFO buffer. When data is read from the DW_apb_ssi DR, the upper word [31:16] is stored in an
intermediate 16 bit register. The lower word [15:0] is returned on the first APB read, and the upper word
[31:16] is returned on the second APB read.

When the APB data bus is 32 bits wide, the DW_apb_ssi DR can be written/read in one APB access. This is
the optimal configuration as the full bandwidth of the bus is used when accessing this peripheral.

For more information about the APB Interface and data widths, see “Integration Considerations” on
page 189.

2.10.3 APB 3.0 Support

The register interface of DW_apb_ssi is complaint with both APB 2.0 and APB 3.0 specifications. The
SSI_APBIF_TYPE parameter is used to select the APB interface type of the register interface. The pready and
pslverr signals are included to support the APB 3.0 interface. The pready signal is always kept to its default
value (HIGH ==1) for all operations except for XIP operations. For information on the XIP mode of
operation, see “XIP Mode Support in SPI Mode” on page 74.

The pslverr signal functionality is enabled when the SSI_APB3_ERR_RESP_EN parameter is set to 1, so that
DW_apb_ssi provides any slave error response from APB. If the SSI_APB3_ERR_RESP_EN parameter is set
to 1 then DW_apb_ssi provides an error response in following conditions:

NoteNoteNoteNote The DR register in the DW_apb_ssi occupies sixty-four 32-bit locations of the memory map to
facilitate AHB burst transfers. There are no burst transactions on the APB bus itself, but
DW_apb_ssi supports the AHB bursts that happen on the AHB side of the AHB/APB bridge.
Writing to any of these address locations has the same effect as pushing the data from the
pwdata bus into the transmit FIFO. Reading from any of these locations has the same effect
as popping data from the receive FIFO onto the prdata bus. The FIFO buffers on the
DW_apb_ssi are not addressable.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 89SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Functional Description

■ If Transmit FIFO is full and a write is attempted on Data register (DR).

■ If receive FIFO is empty and a read is attempted in Data register (DR).

■ Any read/write operation is attempted in the data register when DW_apb_ssi is not enabled
(SSIENR register set to 0).

■ Under XIP mode of operation (xip_en == 1) following conditions results in error response:

❑ If any register write occurs during XIP operation.

❑ If an XIP read is attempted while another master is active on the SPI bus (Master contention).

2.10.4 APB 4.0 Support

DW_apb_ssi complies with the APB 4.0 specification and to adhere to this compliance, the pstrb signal to
the APB interface is available in DW_apb_ssi. In a the write transaction to this interface, the pstrb signal
indicates validity of pdata bytes. DW_apb_ssi component selectively writes to the bytes of the addressed
register whose corresponding bit in the pstrb signal is high. Bytes strobed low by the corresponding pstrb
bits are not modified. The incoming strobe bits for a read transaction is always zero as per protocol.

Figure 2-72 shows the byte lane mapping of the pstrb signal.

Figure 2-72 Byte Lane Mapping of the pstrb Signal

2.11 Reset Signals
When the DW_apb_ssi is configured for asynchronous clock operation (SSI_SYNC_CLK = 0), the
DW_apb_ssi includes the following reset signals, each dedicated to its own clock domain:

■ presetn – resets logic in the pclk clock domain

■ ssi_rst_n – resets logic in ssi_clk clock domain

In order to avoid serious operational failures, both clock domains of the DW_apb_ssi must be reset before
attempting send or receive on the serial data line. Resetting one clock domain of the DW_apb_ssi without
resetting the other clock domain is an illegal operation.

Each reset signal must be de-asserted synchronously with the corresponding clock signal.

When asserting the reset signals, the ssi_rst_n signal should be asserted before or at the same time as the
presetn signal. This prevents any unexpected activity on the serial line that might result from resetting the
programming registers without resetting the serial logic.

NoteNoteNoteNote
■ The pstrb signal is ignored for all the writes to the Data register.

■ DW_apb_ssi does not use the pprot signal and it used only for interface consistency.

PSTRB[3] PSTRB[2] PSTRB[1] PSTRB[0]

0781516232431

https://solvnet.synopsys.com
www.designware.com

90 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Functional Description DesignWare DW_apb_ssi Databook

Similarly, when de-asserting the reset signals, the ssi_rst_n signal should be de-asserted before the presetn
signal is de-asserted.

The recommended procedure for resetting the DW_apb_ssi is as follows:

1. Assert the ssi_rst_n and presetn signal. The sequence of asserting these two signals and their timing
relationships with ssi_clk and pclk are not important.

2. De-assert the ssi_rst_n signal synchronously with ssi_clk.

3. De-assert the presetn signal synchronously with pclk.

Both reset signals should be active for at least three cycles of the respective clock signal before de-asserting.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 91

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

3
Parameter Descriptions

This chapter details all the configuration parameters. You can use the coreConsultant GUI configuration
reports to determine the actual configured state of the controller. Some expressions might refer to TCL
functions or procedures (sometimes identified as <functionof>) that coreConsultant uses to make
calculations. The exact formula used by these TCL functions is not provided in this chapter. However, when
you configure the controller in coreConsultant, all TCL functions and parameters are evaluated completely;
and the resulting values are displayed where appropriate in the coreConsultant GUI reports.

The parameter descriptions in this chapter include the Enabled: attribute which indicates the values
required to be set on other parameters before you can change the value of this parameter.

These tables define all of the user configuration options for this component.

■ Top Level Parameters on page 92

■ SPI Parameters on page 98

■ Clocking on page 100

https://solvnet.synopsys.com
www.designware.com

92 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

3.1 Top Level Parameters

Table 3-1 Top Level Parameters

Label Description

 System Configuration

APB Interface type Selects the APB slave interface type.
Values:

■ APB 2.0 (0)

■ APB 3.0 (1)

■ APB 4.0 (2)

Default Value: APB 2.0
Enabled: Always
Parameter Name: SSI_APBIF_TYPE

Enable APB error response? Configures if APB 3.0 interface should provide error response for invalid read and
write accesses. If this parameter is set to 0 then pslverr will always be driven to 0.
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_APBIF_TYPE != 0
Parameter Name: SSI_APB3_ERR_RESP_EN

APB Data Bus Width Width of APB data bus
Values: 8, 16, 32
Default Value: 32
Enabled: Always
Parameter Name: APB_DATA_WIDTH

 Device Configuration

Serial master or slave
configuration

Configure the device as a master or a slave serial peripheral
Values:
■ Serial Slave (0)

■ Serial Master (1)

Default Value: Serial Master
Enabled: Always
Parameter Name: SSI_IS_MASTER

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 93SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Parameter Descriptions

Include Enhanced Clock Ratio
Architecture?

Configures the device to include new architecture for Transmit and Receive FIFO.
This will enable the device to work in clock ratio of 4 and 6 between ssi_clk and
sclk_in signals.
Values:
■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_IS_MASTER==0 and DWC-APB-Advanced-Source source license
exists.
Parameter Name: SSI_ENH_CLK_RATIO

Maximum Transfer Size Configures the Maximum Transfer Size supported by device. The Receive amd
Transmit FIFO widths will be equal to configured value
Values:
■ 16 Bits (16)

■ 32 Bits (32)

Default Value: 16 Bits
Enabled: Always
Parameter Name: SSI_MAX_XFER_SIZE

Receive FIFO buffer depth Configures the depth of the receive FIFO buffer.
Values: 0x2, ..., 0x100
Default Value: 0x8
Enabled: Always
Parameter Name: SSI_RX_FIFO_DEPTH

Transmit FIFO buffer depth Configures the depth of the transmit FIFO buffer.

■ If SSI_SPI_MODE == 0, minimum FIFO depth is 2.

■ If SSI_SPI_MODE != 0 and SSI_MAX_XFER_SIZE == 16, minimum FIFO depth
is 5.

■ If SSI_SPI_MODE != 0 and SSI_MAX_XFER_SIZE == 32, minimum FIFO depth
is 3.

Values: 0x2, ..., 0x100
Default Value: 0x8
Enabled: Always
Parameter Name: SSI_TX_FIFO_DEPTH

Number of slave select lines Configures the number of slave select lines from the DW_apb_ssi master.
Values: 1, ..., 16
Default Value: 1
Enabled: SSI_IS_MASTER==1
Parameter Name: SSI_NUM_SLAVES

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

94 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

Include Programmble RXD
Sample Logic

Include logic to allow programmable delay on the sample time of the rxd input.
When this logic is included, the default sample time of the rxd input can be delayed
by a programmable number of ssi_clk cycles.
Values:
■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_IS_MASTER==1
Parameter Name: SSI_HAS_RX_SAMPLE_DELAY

Maximum RXD Sample Delay Defines the maximum number of ssi_clk cycles that can be used to delay the
sampling of the rxd input

■ 2 flip-flops added to design logic for each value

Values: 4, ..., 255
Default Value: 4
Enabled: SSI_HAS_RX_SAMPLE_DELAY==1
Parameter Name: SSI_RX_DLY_SR_DEPTH

Peripheral ID code Individual peripheral Identification code.
Values: 0x0, ..., 0xffffffff
Default Value: 0xffffffff
Enabled: Always
Parameter Name: SSI_ID

 External Configuration

Include DMA handshaking
interface signals?

Configures the inclusion of DMA handshaking interface signals. Check the box to
include the DMA interface signals.
Values:

■ false (0)

■ true (1)

Default Value: false
Enabled: Always
Parameter Name: SSI_HAS_DMA

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 95SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Parameter Descriptions

Configure interrupt pinout Selects which interrupt related pins appear as outputs of the design. The user has a
choice of either a single combined interrupt (the logical OR of all DW_apb_ssi
interrupt outputs) or have each individual interrupt appear as a separate output pin
on the component.

■ When configurated as a master there are 6 individual interrupts.

■ When configurated as a slave there are 5 individual interrupts.

Values:
■ Individual Interrupts (0)

■ Combined Interrupt (1)

Default Value: Individual Interrupts
Enabled: Always
Parameter Name: SSI_INTR_IO

Active interrupt level Configures the active level of the output interrupt lines.
Values:
■ Active Low (0)

■ Active High (1)

Default Value: Active Low
Enabled: Always
Parameter Name: SSI_INTR_POL

 Internal Configuration

Hard code the frame format? When set, the frame format (serial protocol) can be fixed so that the user cannot
dynamically program it. This setting restricts the use of DW_apb_ssi to be only a
single-frame format peripheral.
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: Always
Parameter Name: SSI_HC_FRF

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

96 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

Default frame format Selects the frame format that will be available directly after reset. User can configure
any of the frame formats to be the default frame format. If the frame format is
hardcoded, the default frame format is the only frame format possible.
Values:
■ Motorola SPI (0x0)

■ TI SSP (0x1)

■ NatSemi Microwire (0x2)

Default Value: Motorola SPI
Enabled: Always
Parameter Name: SSI_DFLT_FRF

Default serial clock polarity Controls the default state of the clock polarity. Defines the level of the serial clock
when in-active (not toggling). Only used when the frame format is Motorola SPI.
Values:

■ 0 (0x0)

■ 1 (0x1)

Default Value: 0
Enabled: SSI_DFLT_FRF==0
Parameter Name: SSI_DFLT_SCPOL

Default serial clock phase Controls the default state of the clock phase. Only used when the frame format is
Motorola SPI. The serial clock phase selects the relationship of the serial clock with
the serial data. When 0, data is captured on the first edge of the serial clock. When
1, data is captured on the second edge of the serial clock.
Values:

■ 0 (0x0)

■ 1 (0x1)

Default Value: 0
Enabled: SSI_DFLT_FRF==0
Parameter Name: SSI_DFLT_SCPH

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 97SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Parameter Descriptions

Toggle slave select signal
between frames when in SPI
mode and SCPH=0?

When operating in SPI mode with clock phase (SCPH) set to 0, this parameter
controls the behavior of the slave select line (ss_*_n) between data frames.

■ If this parameter is set to "Yes" and CTRLR0.SSTE is "1" the ss_*_n line will
toggle between

consecutive data frames, with the serial clock (sclk) being held to its default value
while ss_*_n is high.

■ If this parameter is set to "Yes" and CTRLR0.SSTE is "0" the ss_*_n will

stay low and sclk will run continuously for the duration of the transfer; if this
parameter is set to 0 the ss_*_n will stay low and sclk will run continuously for the
duration of the transfer
Values:

■ No (0)

■ Yes (1)

Default Value: Yes
Enabled: (SSI_DFLT_FRF==0) || (SSI_HC_FRF==0)
Parameter Name: SSI_SCPH0_SSTOGGLE

Table 3-1 Top Level Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

98 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

3.2 SPI Parameters

Table 3-2 SPI Parameters

Label Description

 Enhanced SPI mode Parameters

Select SPI mode Configures whether the core works in Standard or Dual or Quad or Octal SPI Mode.

■ In Dual Mode - width of txd and rxd signals will be 2-bits.

■ In Quad Mode - width of txd and rxd signals will be 4-bits.

■ In Octal Mode - width of txd and rxd signals will be 8-bits.

Values:
■ Standard SPI Mode (0)

■ SPI Dual Mode (1)

■ SPI Quad Mode (2)

■ SPI Octal Mode (3)

Default Value: Standard SPI Mode
Enabled: ((SSI_DFLT_FRF==0) or (SSI_HC_FRF==0)) and
(SSI_IS_MASTER==1) and DWC-APB-Advanced-Source source license exists
Parameter Name: SSI_SPI_MODE

Enable Enhanced SPI I/O
mapping

Configures whether user wants to hardcode the I/O Mapping inside the controller.
After selecting this option the RXD[1] signal will be used to sample the incoming
data during SPI standard mode of operation.
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_SPI_MODE!=0
Parameter Name: SSI_IO_MAP_EN

Include Dual transfer rate
transfers in SPI frame format?

Configures the device to support Dual Data transmission on both positive and
negative edge of sclk_out
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_SPI_MODE != 0 and SSI_IS_MASTER==1 and DWC-APB-
Advanced-Source source license exists
Parameter Name: SSI_HAS_DDR

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 99SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Parameter Descriptions

Include data strobe signal for
rxd line?

Configures the device to include data strobe signaling for rxd signal. This signal can
be included only when DW_apb_ssi support dual data rate transfers
Values:
■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_HAS_DDR ==1 and SSI_IS_MASTER==1 and DWC-APB-
Advanced-Source source license exists
Parameter Name: SSI_HAS_RXDS

Include Data Mask Signal for
data transfers in SPI mode?

Selects if data mask signal should be included on SPI interface. Data mask signal,
when active, will mask the write data on SPI interface
Values:
■ No (0)

■ Yes (1)

Default Value: No
Enabled: (SSI_SPI_MODE != 0) && (SSI_APBIF_TYPE == 2)
Parameter Name: SSI_SPI_DM_EN

Include XIP feature in SPI
mode?

If selected DW_apb_ssi will be able to perform eXucute In Place (XIP) commands
while working in SPI protocol. A new sideband signal (xip_en) will be included as a
part of APB interface which can be used to select if slave interface is used to
perform register read/write or in XIP mode.
Values:
■ No (0)

■ Yes (1)

Default Value: No
Enabled: (SSI_SPI_MODE != 0) && (SSI_APBIF_TYPE != 0)
Parameter Name: SSI_XIP_EN

Table 3-2 SPI Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

100 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

3.3 Clocking Parameters

Table 3-3 Clocking Parameters

Label Description

 Synchronization parameters

Are pclk and ssi_clk
synchronous?

Defines if the pclk is synchronous to the ssi_clk. If they are synchronous then one
does not need to retime signals across the clock domains.
Values:

■ No (0)

■ Yes (1)

Default Value: Yes
Enabled: Always
Parameter Name: SSI_SYNC_CLK

Generate clock enable input for
ssi_clk?

When enabled, the ssi_clk_en signal enables data propagation through ssi_clk flip-
flops. When disabled, the ssi_clk flip-flops are always enabled.
Values:

■ No (0)

■ Yes (1)

Default Value: No
Enabled: SSI_SYNC_CLK==1
Parameter Name: SSI_CLK_EN_MODE

pclk to ssi_clk Synchronization
Depth

Defines the number of synchronization register stages for signals passing from the
DWC_ssi Slave clock domain (pclk) to DWC_ssi Core Clock domain (ssi_clk).

■ 2: Two-stage synchronization, both stages positive edge.

■ 3: Three-stage synchronization, all stages positive edge.

■ 4: Four-stage synchronization, all stages positive edge.

across the clock domains.
Values: 2, 3, 4
Default Value: 2
Enabled: Always
Parameter Name: SSI_P2S_SYNC_DEPTH

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 101SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Parameter Descriptions

ssi_clk to pclk Synchronization
Depth

Defines the number of synchronization register stages for signals passing from the
DWC_ssi DWC_ssi Core Clock domain (ssi_clk) to Slave clock domain (pclk).

■ 2: Two-stage synchronization, both stages positive edge.

■ 3: Three-stage synchronization, all stages positive edge.

■ 4: Four-stage synchronization, all stages positive edge.

across the clock domains.
Values: 2, 3, 4
Default Value: 2
Enabled: Always
Parameter Name: SSI_S2P_SYNC_DEPTH

Table 3-3 Clocking Parameters (Continued)

Label Description

https://solvnet.synopsys.com
www.designware.com

102 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Parameter Descriptions DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 103

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

4
Signal Descriptions

This chapter details all possible I/O signals in the controller. For configurable IP titles, your actual
configuration might not contain all of these signals.

Inputs are on the left of the signal diagrams; outputs are on the right.

Attention: For configurable IP titles, do not use this document to determine the exact I/O footprint of the
controller. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the I/O signals for your actual
configuration at workspace/report/IO.html or workspace/report/IO.xml after you have completed the
report creation activity. That report comes from the exact same source as this chapter but removes all the
I/O signals that are not in your actual configuration. This does not apply to non-configurable IP titles. In
addition, all parameter expressions are evaluated to actual values. Therefore, the widths might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

In addition to describing the function of each signal, the signal descriptions in this chapter include the
following information:

Active State: Indicates whether the signal is active high or active low. When a signal is not intended to be
used in a particular application, then this signal needs to be tied or driven to the inactive state (opposite of
the active state).

Registered: Indicates whether or not the signal is registered directly inside the IP boundary without
intervening logic (excluding simple buffers). A value of No does not imply that the signal is not
synchronous, only that there is some combinatorial logic between the signal's origin or destination register
and the boundary of the controller. A value of N/A indicates that this information is not provided for this IP
title.

Synchronous to: Indicates which clock(s) in the IP sample this input (drive for an output) when considering
all possible configurations. A particular configuration might not have all of the clocks listed. This clock
might not be the same as the clock that your application logic should use to clock (sample/drive) this pin.
For more details, consult the clock section in the databook.

Exists: Name of configuration parameter(s) that populates this signal in your configuration.

https://solvnet.synopsys.com
www.designware.com

104 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

Validated by: Assertion or de-assertion of signal(s) that validates the signal being described.

Attributes used with Synchronous To

■ Clock name - The name of the clock that samples an input or drive and output.

■ None - This attribute may be used for clock inputs, hard-coded outputs, feed-through (direct or
combinatorial), dangling inputs, unused inputs and asynchronous outputs.

■ Asynchronous - This attribute is used for asynchronous inputs and asynchronous resets.

The I/O signals are grouped as follows:

■ APB Slave Interface on page 105

■ Serial Interface on page 108

■ DMA Interface on page 112

■ Slave Interface on page 114

■ Master Interface on page 115

■ Interrupt Signals on page 116

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 105SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

4.1 APB Slave Interface Signals

pclk - - pready
presetn - - pslverr

psel - - prdata
penable -

pwrite -
paddr -

pwdata -
xip_en -

pstrb -
pprot -

Table 4-1 APB Slave Interface Signals

Port Name I/O Description

pclk I APB clock.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

presetn I APB reset signal. Asynchronous APB interface domain reset. This
signal resets only the bus interface. The signal is asserted
asynchronously, but is deasserted synchronously after the rising
edge of pclk. The synchronization must be provided external to this
component.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

psel I APB peripheral select that lasts for two pclk cycles. When asserted,
indicates that the peripheral has been selected for read or write
operation.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

106 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

penable I APB enable control. Asserted for a single pclk cycle and used for
timing read or write operations.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pwrite I APB write control.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: When high, indicates a write access to the peripheral;
when low, indicates a read access.

paddr[(APB_ADDR_WIDTH-1):0] I APB address bus. Uses lower 8 bits of the address bus for register
decode.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

pwdata[(APB_DATA_WIDTH-1):0] I APB write data bus. Driven by the bus master (bridge unit) during
write cycles. Can be 8, 16, or 32 bits wide.
Exists: Always
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

xip_en I APB side band signal which will be used to distinguish between
normal register read-write and XIP transfers. When xip_en is driven
to 1 all the transfers will consider to be XIP transfers, in this scenario
APB writes are not allowed and READs can be performed.
Exists: (SSI_XIP_EN==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-1 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 107SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

pready O Indicates whether a request cycle was accepted.
Exists: (SSI_APBIF_TYPE!=0)
Synchronous To: pclk
Registered: SSI_XIP_EN==1 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

pslverr O Flag for the slave error response from APB.
Exists: (SSI_APBIF_TYPE!=0)
Synchronous To: pclk
Registered: SSI_APB3_ERR_RESP_EN==1 ? Yes : No
Power Domain: SINGLE_DOMAIN
Active State: High

pstrb[((APB_DATA_WIDTH/8)-1):0] I APB4 Write strobe bus. A high on individual bits in the pstrb bus
indicate that the corresponding incoming write data byte on APB bus
is to be updated in the addressed register.
Exists: (SSI_APBIF_TYPE==2)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

pprot[2:0] I APB4 Protection type. This signal is only added for interface
consistency.
Exists: (SSI_APBIF_TYPE==2)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

prdata[(APB_DATA_WIDTH-1):0] O APB readback data. Driven by the selected peripheral during read
cycles. Can be 8, 16, or 32 bits wide
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

Table 4-1 APB Slave Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

108 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

4.2 Serial Interface Signals

rxd - - ssi_sleep
rxds - - ssi_busy

ss_in_n - - txd
ssi_clk - - txd_dm

ssi_clk_en - - txd_dm_oe_n
ssi_rst_n - - ssi_oe_n

scan_mode - - spi_mode

Table 4-2 Serial Interface Signals

Port Name I/O Description

rxd[(SSI_SPI_MULTIIO-1):0] I Receive data signal. Input data from a serial-master or serial-slave
device is received on this line.
Exists: Always
Synchronous To: sclk_in
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: N/A

rxds I Read Data strobe signal. In SPI DDR mode, once this
SPI_CTRLR0.RXDS_EN bit is set to 1, DW_apb_ssi will use Read
data strobe (rxds) to capture read data.
Exists: (SSI_HAS_RXDS==1)
Synchronous To: None
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

ss_in_n I Slave select input. When configured as a serial slave, this signal
selects the device. When configured as a serial master, this signal
can be used to inform the system of master contention on the bus.
Exists: Always
Synchronous To: ssi_clk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: Low

ssi_clk I Peripheral serial clock signal.
Exists: Always
Synchronous To: None
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 109SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

ssi_clk_en I Optional. Enable signal for ssi_clk domain flip flops. When the ssi_clk
input is connected to pclk, all flip-flops clocked by the ssi_clk
propagates data only when this signal is active, which gives you
control of the frequency ratio between pclk and ssi_clk. This signal is
used only when SSI_CLK_EN_MODE = 1.
Exists: (SSI_CLK_EN_MODE==1)
Synchronous To: ssi_clk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

ssi_rst_n I Peripheral serial reset signal.
Exists: Always
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: Low

scan_mode I Scan mode. This signal should be asserted - that is, driven to logic 1
during scan testing and should be deasserted - tied to logic 0 - at all
other times.
Exists: (SSI_ENH_CLK_RATIO==1 || SSI_HAS_RXDS==1)
Synchronous To: Asynchronous
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

ssi_sleep O SSI enable flag. This signal is asserted when the DW_apb_ssi is
enabled. It can be used by the system clock generator/controller
module in order to disable the ssi_clk input of the DW_apb_ssi; this
reduces power consumption in the system.
 0- Not safe to remove ssi_clk
 1- Safe to remove ssi_clk
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-2 Serial Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

110 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

ssi_busy O SSI busy flag. This signal is asserted when the DW_apb_ssi is busy
with serial transfer. This signal can be used to know the status of
DW_apb_ssi instead of polling for busy bit in SR register.
Exists: Always
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

txd[(SSI_SPI_MULTIIO-1):0] O Transmit data signal. Output data from the serial master or serial
slave is transmitted on this line.
Exists: Always
Synchronous To: SSI_ENH_CLK_RATIO==1 ? "sclk_in" : "ssi_clk"
Registered: SSI_HAS_EXTD_SPI==1 ? Yes :
(SSI_ENH_CLK_RATIO==1 ? No : Yes)
Power Domain: SINGLE_DOMAIN
Active State: N/A

txd_dm O Data mask signal for transmit line (txd). When active data on txd line
is masked. This signal can be used to partially update memory
locations in SPI device.
Exists: (SSI_SPI_DM_EN==1)
Synchronous To: ssi_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

txd_dm_oe_n O Output enable signal for data mask.
Exists: (SSI_SPI_DM_EN==1)
Synchronous To: ssi_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

ssi_oe_n[(SSI_SPI_MULTIIO-1):0] O Output enable signal. Used to control external buffers on serial
output lines.
Exists: Always
Synchronous To: ssi_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

Table 4-2 Serial Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 111SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

spi_mode[1:0] O SPI Frame format indicator signal. Indicates in which mode does the
SPI transfer is happening.
 00 - Standard SPI mode
 01 - SPI Dual Mode
 10 - SPI Quad mode
 11 - SPI Octal mode
This signal can be used for multiplexing the I/O lines for different
mode of operations.
Exists: (SSI_SPI_MODE!=0)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-2 Serial Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

112 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

4.3 DMA Interface Signals

dma_tx_ack - - dma_tx_req
dma_rx_ack - - dma_rx_req

- dma_tx_single
- dma_rx_single

Table 4-3 DMA Interface Signals

Port Name I/O Description

dma_tx_ack I DMA Transmit Acknowledgement Sent by the DMA Controller to
acknowledge the end of each DMA burst or single transaction to the
transmit FIFO.
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_ack I DMA Receive Acknowledgement Sent by the DMA controller to
acknowledge the end of each DMA burst or single transaction from
the receive FIFO.
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_req O Transmit FIFO DMA Request - Asserted when the transmit FIFO
requires service from the DMA Controller; that is, the transmit FIFO
is at or below the watermark level.
 0 - not requesting
 1 - requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 113SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

dma_rx_req O Receive FIFO DMA Request - Asserted when the receive FIFO
requires service from the DMA Controller; that is, the receive FIFO is
at or above the watermark level.
 0 - not requesting
 1 - requesting
 Software must set up the DMA controller with the number of words
to be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_tx_single O DMA Transmit FIFO Single Signal This DMA status output informs
the DMA Controller that there is at least one free entry in the transmit
FIFO. This output does not request a DMA transfer.
 0 - Transmit FIFO is full
 1 - Transmit FIFO is not full
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

dma_rx_single O DMA Receive FIFO Single Signal This DMA status output informs
the DMA Controller that there is at least one valid data entry in the
receive FIFO. This output does not request a DMA transfer.
 0- Receive FIFO is empty
 1- Receive FIFO is not empty
Exists: (SSI_HAS_DMA==1)
Synchronous To: pclk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: High

Table 4-3 DMA Interface Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

114 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

4.4 Slave Interface Signals

sclk_in -

Table 4-4 Slave Interface Signals

Port Name I/O Description

sclk_in I Serial bit-rate clock. Generated by the serial bus master and used by
the DW_apb_ssi slave to regulate data transfer. Never used to clock
any registers; instead, an edge-detector is used in order for
everything to run in sclk domain. This signal is asynchronous to the
ssi_clk.
Exists: (SSI_IS_MASTER==0)
Synchronous To: Asynchronous
Registered: N/A
Power Domain: SINGLE_DOMAIN
Active State: N/A

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 115SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

4.5 Master Interface Signals

- sclk_out
- ss_x_n (for x = 0; x <= SSI_NUM_SLAVES)

Table 4-5 Master Interface Signals

Port Name I/O Description

sclk_out O Serial bit-rate clock. Generated by the DW_apb_ssi from ssi_clk.
Exists: (SSI_IS_MASTER==1)
Synchronous To: ssi_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: N/A

ss_x_n
(for x = 0; x <= SSI_NUM_SLAVES)

O Slave select output. For MWire and SPI, the active polarity is logic 0;
for SSP, the active polarity is logic 1.The number of slave select
signals depends on the number of configured
slaves(SSI_NUM_SLAVES).
Exists: SSI_NUM_SLAVES-1 >= x
Synchronous To: ssi_clk
Registered: Yes
Power Domain: SINGLE_DOMAIN
Active State: Low

https://solvnet.synopsys.com
www.designware.com

116 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

4.6 Interrupt Signals

- ssi_intr(_n)
- ssi_txe_intr(_n)
- ssi_txo_intr(_n)
- ssi_rxf_intr(_n)
- ssi_rxo_intr(_n)
- ssi_rxu_intr(_n)
- ssi_mst_intr(_n)

Table 4-6 Interrupt Signals

Port Name I/O Description

ssi_intr(_n) O Optional. Combined SSI interrupt flag. Logical OR of all individual
interrupts.
Exists: SSI_INTR_IO == 1
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

ssi_txe_intr(_n) O Optional. Transmit FIFO empty interrupt. Active when the transmit
FIFO is equal to or below the threshold value (TFT).
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

ssi_txo_intr(_n) O Optional. Transmit FIFO overflow interrupt. Active when the APB
attempts to write to a full transmit FIFO.
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

ssi_rxf_intr(_n) O Optional. Receive FIFO full interrupt. Active when the receive FIFO is
equal to or above the threshold value (RFT) plus 1.
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 117SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Signal Descriptions

ssi_rxo_intr(_n) O Optional. Receive FIFO overflow interrupt. Active when the receive
logic attempts to write into a full receive FIFO.
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

ssi_rxu_intr(_n) O Optional. Receive FIFO underflow interrupt. Active when the APB
attempts to read from an empty receive FIFO.
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

ssi_mst_intr(_n) O Optional. Multi-master contention interrupt. Informs of possible bus
contention.
Exists: SSI_INTR_IO == 0
Synchronous To: pclk
Registered: No
Power Domain: SINGLE_DOMAIN
Active State: High when SSI_INTR_POL=1 otherwise Low

Table 4-6 Interrupt Signals (Continued)

Port Name I/O Description

https://solvnet.synopsys.com
www.designware.com

118 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Signal Descriptions DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 119

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

5
Register Descriptions

This chapter details all possible registers in the controller. They are arranged hierarchically into maps and
blocks (banks). For configurable IP titles, your actual configuration might not contain all of these registers.

Attention: For configurable IP titles, do not use this document to determine the exact attributes of your
register map. It is for reference purposes only.

When you configure the controller in coreConsultant, you must access the register attributes for your actual
configuration at workspace/report/ComponentRegisters.html or
workspace/report/ComponentRegisters.xml after you have completed the report creation activity. That
report comes from the exact same source as this chapter but removes all the registers that are not in your
actual configuration. This does not apply to non-configurable IP titles. In addition, all parameter
expressions are evaluated to actual values. Therefore, the Offset and Memory Access values might change
depending on your actual configuration.

Some expressions might refer to TCL functions or procedures (sometimes identified as <functionof>) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the controller in coreConsultant, all TCL functions and
parameters are evaluated completely; and the resulting values are displayed where appropriate in the
coreConsultant GUI reports.

Exists Expressions

These expressions indicate the combination of configuration parameters required for a register, field, or
block to exist in the memory map. The expression is only valid in the local context and does not indicate the
conditions for existence of the parent. For example, the expression for a bit field in a register assumes that
the register exists and does not include the conditions for existence of the register.

Offset

The term Offset is synonymous with Address.

Memory Access Attributes

The Memory Access attribute is defined as <ReadBehavior>/<WriteBehavior> which are defined in the
following table.

https://solvnet.synopsys.com
www.designware.com

120 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

Special Optional Attributes

Some register fields might use the following optional attributes.

Table 5-1 Possible Read and Write Behaviors

Read (or Write) Behavior Description

RC A read clears this register field.

RS A read sets this register field.

RM A read modifies the contents of this register field.

Wo You can only write to this register once field.

W1C A write of 1 clears this register field.

W1S A write of 1 sets this register field.

W1T A write of 1 toggles this register field.

W0C A write of 0 clears this register field.

W0S A write of 0 sets this register field.

W0T A write of 0 toggles this register field.

WC Any write clears this register field.

WS Any write sets this register field.

WM Any write toggles this register field.

no Read Behavior attribute You cannot read this register. It is Write-Only.

no Write Behavior attribute You cannot write to this register. It is Read-Only.

Table 5-2 Memory Access Examples

Memory Access Description

R Read-only register field.

W Write-only register field.

R/W Read/write register field.

R/W1C You can read this register field. Writing 1 clears it.

RC/W1C Reading this register field clears it. Writing 1 clears it.

R/Wo You can read this register field. You can only write to it once.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 121SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

Component Banks/Blocks

The following table shows the address blocks for each memory map. Follow the link for an address block to
see a table of its registers.

Table 5-3 Optional Attributes

Attribute Description

Volatile As defined by the IP-XACT specification. If true, indicates in the
case of a write followed by read, or in the case of two consecutive
reads, there is no guarantee as to what is returned by the read on
the second transaction or that this return value is consistent with the
write or read of the first transaction. The element implies there is
some additional mechanism by which this field can acquire new
values other than by reads/writes/resets and other access methods
known to IP-XACT. For example, when the core updates the register
field contents.

Testable As defined by the IP-XACT specification. Possible values are
unconstrained, untestable, readOnly, writeAsRead, restore.
Untestable means that this field is untestable by a simple automated
register test. For example, the read-write access of the register is
controlled by a pin or another register. readOnly means that you
should not write to this register; only read from it. This might apply
for a register that modifies the contents of another register.

Reset Mask As defined by the IP-XACT specification. Indicates that this register
field has an unknown reset value. For example, the reset value is set
by another register or an input pin; or the register is implemented
using RAM.

* Varies Indicates that the memory access (or reset) attribute (read, write
behavior) is not fixed. For example, the read-write access of the
register is controlled by a pin or another register. Or when the
access depends on some configuration parameter; in this case the
post-configuration report in coreConsultant gives the actual access
value.

Table 5-4 Address Banks/Blocks for Memory Map: ssi_memory_map

Address Block Description

ssi_address_block on page 122 Exists: Always

https://solvnet.synopsys.com
www.designware.com

122 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1 ssi_memory_map/ssi_address_block Registers
ssi_address_block. Follow the link for the register to see a detailed description of the register.

Table 5-5 Registers for Address Block: ssi_memory_map/ssi_address_block

Register Offset Description

CTRLR0 on page 124 0x0 This register controls the serial data transfer. It is impossible
to write to this register when...

CTRLR1 on page 134 0x4 This register exists only when the DW_apb_ssi is configured
as a master device. When the DW_apb_ssi...

SSIENR on page 135 0x8 This register enables and disables the DW_apb_ssi. Reset
Value: 0x0

MWCR on page 136 0xc This register controls the direction of the data word for the
half-duplex Microwire serial protocol....

SER on page 138 0x10 This register is valid only when the DW_apb_ssi is
configured as a master device. When the DW_apb_ssi...

BAUDR on page 140 0x14 This register is valid only when the DW_apb_ssi is
configured as a master device. When the DW_apb_ssi...

TXFTLR on page 142 0x18 This register controls the threshold value for the transmit
FIFO memory. The DW_apb_ssi is enabled...

RXFTLR on page 144 0x1c This register controls the threshold value for the receive
FIFO memory. The DW_apb_ssi is enabled...

TXFLR on page 146 0x20 This register contains the number of valid data entries in the
transmit FIFO memory. Reset Value:...

RXFLR on page 147 0x24 This register contains the number of valid data entries in the
receive FIFO memory. This register...

SR on page 148 0x28 This is a read-only register used to indicate the current
transfer status, FIFO status, and any...

IMR on page 151 0x2c This read/write reigster masks or enables all interrupts
generated by the DW_apb_ssi. When the DW_apb_ssi...

ISR on page 153 0x30 This register reports the status of the DW_apb_ssi interrupts
after they have been masked. Reset...

RISR on page 156 0x34 This read-only register reports the status of the DW_apb_ssi
interrupts prior to masking. Reset...

TXOICR on page 159 0x38 Transmit FIFO Overflow Interrupt Clear Register. Reset
Value: 0x0

RXOICR on page 160 0x3c Receive FIFO Overflow Interrupt Clear Register. Reset
Value: 0x0

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 123SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

RXUICR on page 161 0x40 Receive FIFO Underflow Interrupt Clear Register. Reset
Value: 0x0

MSTICR on page 162 0x44 Multi-Master Interrupt Clear Register. Reset Value: 0x0

ICR on page 163 0x48 Interrupt Clear Register. Reset Value: 0x0

DMACR on page 164 0x4c This register is only valid when DW_apb_ssi is configured
with a set of DMA Controller interface...

DMATDLR on page 166 0x50 This register is only valid when the DW_apb_ssi is
configured with a set of DMA interface signals...

DMARDLR on page 168 0x54 This register is only valid when DW_apb_ssi is configured
with a set of DMA interface signals (SSI_HAS_DMA...

IDR on page 169 0x58 This register contains the peripherals identification code,
which is written into the register at...

SSI_VERSION_ID on page 170 0x5c This read-only register stores the specific DW_apb_ssi
component version. Reset Value:...

DRx
(for x = 0; x <= 35) on page 171

0x60 The DW_apb_ssi data register is a 16/32-bit (depending on
SSI_MAX_XFER_SIZE) read/write buffer for the...

RX_SAMPLE_DLY on page 173 0xf0 This register is only valid when the DW_apb_ssi is
configured with rxd sample delay logic
(SSI_HAS_RX_SAMPLE_DELAY==1)....

SPI_CTRLR0 on page 175 0xf4 This register is valid only when SSI_SPI_MODE is either set
to "Dual" or "Quad" or "Octal" mode. This...

TXD_DRIVE_EDGE on page 178 0xf8 This Register is valid only when SSI_HAS_DDR is equal to
1. This register is used to control the...

RSVD on page 179 0xfc RSVD - Reserved address location.

Table 5-5 Registers for Address Block: ssi_memory_map/ssi_address_block (Continued)

Register Offset Description

https://solvnet.synopsys.com
www.designware.com

124 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.1 CTRLR0

■ Name: Control Register 0

■ Description: This register controls the serial data transfer. It is impossible to write to this register
when the DW_apb_ssi is enabled. The DW_apb_ssi is enabled and disabled by writing to the SSIENR
register.

Reset Value: SSI_CTRLR0_RST

■ Size: 32 bits

■ Offset: 0x0

■ Exists: Always

31
:2

5

24 23 22
:2

1

20
:1

6

15
:1

2

11 10 9:
8

7 6 5:
4

3:
0

R
S

V
D

_C
T

R
LR

0

S
S

T
E

R
S

V
D

_C
T

R
LR

0_
23

S
P

I_
F

R
F

D
F

S
_3

2

C
F

S

S
R

L

S
LV

_O
E

T
M

O
D

S
C

P
O

L

S
C

P
H

F
R

F

D
F

S

Table 5-6 Fields for Register: CTRLR0

Bits Name
Memory
Access Description

31:25 RSVD_CTRLR0 R SSTE Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 125SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

24 SSTE * Varies Slave Select Toggle Enable.
When operating in SPI mode with clock phase (SCPH) set to
0, this register controls the behavior of the slave select line
(ss_*_n) between data frames. If this register field is set to 1
the ss_*_n line will toggle between consecutive data frames,
with the serial clock (sclk) being held to its default value while
ss_*_n is high; if this register field is set to 0 the ss_*_n will
stay low and sclk will run continuously for the duration of the
transfer.
Note: This register is only valid when
SSI_SCPH0_SSTOGGLE is set to 1.
Value After Reset: "(SSI_SCPH0_SSTOGGLE==0) ? \"0\":
\"1\""
Exists: Always
Memory Access: "(SSI_SCPH0_SSTOGGLE==0) ? \"read-
only\": \"read-write\""

23 RSVD_CTRLR0_23 R CTRLR0_23 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

22:21 SPI_FRF * Varies SPI Frame Format:
Selects data frame format for Transmitting/Receiving the
data
Bits only valid when SSI_SPI_MODE is either set to "Dual"
or "Quad" or "Octal" mode.
When SSI_SPI_MODE is configured for "Dual Mode", 10/11
combination is reserved.
When SSI_SPI_MODE is configured for "Quad Mode", 11
combination is reserved.
Values:

■ 0x0 (STD_SPI_FRF): Standard SPI Frame Format

■ 0x1 (DUAL_SPI_FRF): Dual SPI Frame Format

■ 0x2 (QUAD_SPI_FRF): Quad SPI Frame Format

■ 0x3 (OCTAL_SPI_FRF): Octal SPI Frame Format

Value After Reset: 0x0
Exists: Always
Memory Access: "(SSI_SPI_MODE==0) ? \"read-only\":
\"read-write\""

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

126 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

20:16 DFS_32 * Varies Data Frame Size in 32-bit transfer size mode. Used to select
the data frame size in 32-bit transfer mode. These bits are
only valid when SSI_MAX_XFER_SIZE is configured to 32.
When the data frame size is programmed to be less than 32
bits, the receive data are automatically right-justified by the
receive logic, with the upper bits of the receive FIFO zero-
padded. You are responsible for making sure that transmit
data is right-justified before writing into the transmit FIFO.
The transmit logic ignores the upper unused bits when
transmitting the data.
Note: When SSI_SPI_MODE is either set to "Dual" or
"Quad" or "Octal" mode and SPI_FRF is not set to 2'b00.
- DFS value should be multiple of 2 if SPI_FRF = 0x01,
- DFS value should be multiple of 4 if SPI_FRF = 0x10,
- DFS value should be multiple of 8 if SPI_FRF = 0x11.
Values:
■ 0x3 (FRAME_04BITS): 4-bit serial data transfer

■ 0x4 (FRAME_05BITS): 5-bit serial data transfer

■ 0x5 (FRAME_06BITS): 6-bit serial data transfer

■ 0x6 (FRAME_07BITS): 7-bit serial data transfer

■ 0x7 (FRAME_08BITS): 8-bit serial data transfer

■ 0x8 (FRAME_09BITS): 9-bit serial data transfer

■ 0x9 (FRAME_10BITS): 10-bit serial data transfer

■ 0xa (FRAME_11BITS): 11-bit serial data transfer

■ 0xb (FRAME_12BITS): 12-bit serial data transfer

■ 0xc (FRAME_13BITS): 13-bit serial data transfer

■ 0xd (FRAME_14BITS): 14-bit serial data transfer

■ 0xe (FRAME_15BITS): 15-bit serial data transfer

■ 0xf (FRAME_16BITS): 16-bit serial data transfer

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 127SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

■ 0x10 (FRAME_17BITS): 17-bit serial data transfer

■ 0x11 (FRAME_18BITS): 18-bit serial data transfer

■ 0x12 (FRAME_19BITS): 19-bit serial data transfer

■ 0x13 (FRAME_20BITS): 20-bit serial data transfer

■ 0x14 (FRAME_21BITS): 21-bit serial data transfer

■ 0x15 (FRAME_22BITS): 22-bit serial data transfer

■ 0x16 (FRAME_23BITS): 23-bit serial data transfer

■ 0x17 (FRAME_24BITS): 24-bit serial data transfer

■ 0x18 (FRAME_25BITS): 25-bit serial data transfer

■ 0x19 (FRAME_26BITS): 26-bit serial data transfer

■ 0x1a (FRAME_27BITS): 27-bit serial data transfer

■ 0x1b (FRAME_28BITS): 28-bit serial data transfer

■ 0x1c (FRAME_29BITS): 29-bit serial data transfer

■ 0x1d (FRAME_30BITS): 30-bit serial data transfer

■ 0x1e (FRAME_31BITS): 31-bit serial data transfer

■ 0x1f (FRAME_32BITS): 32-bit serial data transfer

Value After Reset: "(SSI_MAX_XFER_SIZE==32) ? \"0x7\"
: \"0x0\""
Exists: Always
Memory Access: "(SSI_MAX_XFER_SIZE==32) ? \"read-
write\" : \"read-only\""

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

128 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

15:12 CFS R/W Control Frame Size. Selects the length of the control word for
the Microwire frame format.
Values:

■ 0x0 (SIZE_01_BIT): 1-bit Control Word

■ 0x1 (SIZE_02_BIT): 2-bit Control Word

■ 0x2 (SIZE_03_BIT): 3-bit Control Word

■ 0x3 (SIZE_04_BIT): 4-bit Control Word

■ 0x4 (SIZE_05_BIT): 5-bit Control Word

■ 0x5 (SIZE_06_BIT): 6-bit Control Word

■ 0x6 (SIZE_07_BIT): 7-bit Control Word

■ 0x7 (SIZE_08_BIT): 8-bit Control Word

■ 0x8 (SIZE_09_BIT): 9-bit Control Word

■ 0x9 (SIZE_10_BIT): 10-bit Control Word

■ 0xa (SIZE_11_BIT): 11-bit Control Word

■ 0xb (SIZE_12_BIT): 12-bit Control Word

■ 0xc (SIZE_13_BIT): 13-bit Control Word

■ 0xd (SIZE_14_BIT): 14-bit Control Word

■ 0xe (SIZE_15_BIT): 15-bit Control Word

■ 0xf (SIZE_16_BIT): 16-bit Control Word

Value After Reset: 0x0
Exists: Always

11 SRL R/W Shift Register Loop.
Used for testing purposes only. When internally active,
connects the transmit shift register output to the receive shift
register input.
Can be used in both serial-slave and serial-master modes.
When the DW_apb_ssi is configured as a slave in loopback
mode, the ss_in_n and ssi_clk signals must be provided by
an external source. In this mode, the slave cannot generate
these signals because there is nothing to which to loop back
Values:
■ 0x1 (TESTING_MODE): Test mode: Tx & Rx shift reg

connected

■ 0x0 (NORMAL_MODE): Normal mode operation

Value After Reset: 0x0
Exists: Always

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 129SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

10 SLV_OE R/W Slave Output Enable. Relevant only when the DW_apb_ssi is
configured as a serial-slave device. When configured as a
serial master, this bit field has no functionality. This bit
enables or disables the setting of the ssi_oe_n output from
the DW_apb_ssi serial slave. When SLV_OE = 1, the
ssi_oe_n output can never be active. When the ssi_oe_n
output controls the tri-state buffer on the txd output from the
slave, a high impedance state is always present on the slave
txd output when SLV_OE = 1.
This is useful when the master transmits in broadcast mode
(master transmits data to all slave devices). Only one slave
may respond with data on the master rxd line. This bit is
enabled after reset and must be disabled by software (when
broadcast mode is used), if you do not want this device to
respond with data.
Values:
■ 0x1 (DISABLED): Slave Output is disabled

■ 0x0 (ENABLED): Slave Output is enabled

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 0

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

130 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

9:8 TMOD R/W Transfer Mode.
Selects the mode of transfer for serial communication. This
field does not affect the transfer duplicity. Only indicates
whether the receive or transmit data are valid.
 In transmit-only mode, data received from the external
device is not valid and is not stored in the receive FIFO
memory; it is overwritten on the next transfer.
 In receive-only mode, transmitted data are not valid. After
the first write to the transmit FIFO, the same word is
retransmitted for the duration of the transfer.
 In transmit-and-receive mode, both transmit and receive
data are valid. The transfer continues until the transmit FIFO
is empty. Data received from the external device are stored
into the receive FIFO memory, where it can be accessed by
the host processor.
 In eeprom-read mode, receive data is not valid while control
data is being transmitted. When all control data is sent to the
EEPROM, receive data becomes valid and transmit data
becomes invalid. All data in the transmit FIFO is considered
control data in this mode. This transfer mode is only valid
when the DW_apb_ssi is configured as master device.
00 - Transmit & Receive
01 - Transmit Only
10 - Receive Only
11 - EEPROM Read
When SSI_SPI_MODE is either set to "Dual" or "Quad" or
"Octal" mode and SPI_FRF is not set to 2'b00. There are
only two valid combinations:
10 - Read
01 - Write
Values:
■ 0x0 (TX_AND_RX): Transmit & receive

■ 0x1 (TX_ONLY): Transmit only mode or Write (SPI_FRF
!= 2'b00)

■ 0x2 (RX_ONLY): Receive only mode or Read (SPI_FRF
!= 2'b00)

■ 0x3 (EEPROM_READ): EEPROM Read mode

Value After Reset: 0x0
Exists: Always

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 131SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

7 SCPOL * Varies Serial Clock Polarity.
Valid when the frame format (FRF) is set to Motorola SPI.
Used to select the polarity of the inactive serial clock, which
is held inactive when the DW_apb_ssi master is not actively
transferring data on the serial bus.
Values:
■ 0x0 (SCLK_LOW): Inactive state of serial clock is low

■ 0x1 (SCLK_HIGH): Inactive state of serial clock is high

Value After Reset: SSI_DFLT_SCPOL
Exists: Always
Memory Access: "(SSI_HC_FRF==0) ? \"read-write\" :
\"read-only\""

6 SCPH * Varies Serial Clock Phase.
Valid when the frame format (FRF) is set to Motorola SPI.
The serial clock phase selects the relationship of the serial
clock with the slave select signal.
When SCPH = 0, data are captured on the first edge of the
serial clock. When SCPH = 1, the serial clock starts toggling
one cycle after the slave select line is activated, and data are
captured on the second edge of the serial clock.
Values:

■ 0x0 (SCPH_MIDDLE): Serial clock toggles in middle of
first data bit

■ 0x1 (SCPH_START): Serial clock toggles at start of first
data bit

Value After Reset: SSI_DFLT_SCPH
Exists: Always
Memory Access: "(SSI_HC_FRF==0) ? \"read-write\" :
\"read-only\""

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

132 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5:4 FRF * Varies Frame Format.Selects which serial protocol transfers the
data.
Values:

■ 0x0 (MOTOROLA_SPI): Motorolla SPI Frame Format

■ 0x1 (TEXAS_SSP): Texas Instruments SSP Frame
Format

■ 0x2 (NS_MICROWIRE): National Microwire Frame
Format

■ 0x3 (RESERVED): Reserved value

Value After Reset: SSI_DFLT_FRF
Exists: Always
Memory Access: "(SSI_HC_FRF==0) ? \"read-write\" :
\"read-only\""

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 133SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

3:0 DFS * Varies Data Frame Size.
This register field is only valid when SSI_MAX_XFER_SIZE
is configured to 16. If SSI_MAX_XFER_SIZE is configured to
32, then writing to this field will not have any effect.
Selects the data frame length. When the data frame size is
programmed to be less than 16 bits, the receive data are
automatically right-justified by the receive logic, with the
upper bits of the receive FIFO zero-padded.
You must right-justify transmit data before writing into the
transmit FIFO. The transmit logic ignores the upper unused
bits when transmitting the data
Note: When SSI_SPI_MODE is either set to "Dual" or
"Quad" or "Octal" mode and SPI_FRF is not set to 2'b00.
- DFS value should be multiple of 2 if SPI_FRF = 01,
- DFS value should be multiple of 4 if SPI_FRF = 10,
- DFS value should be multiple of 8 if SPI_FRF = 11.
Values:
■ 0x3 (FRAME_04BITS): 4-bit serial data transfer

■ 0x4 (FRAME_05BITS): 5-bit serial data transfer

■ 0x5 (FRAME_06BITS): 6-bit serial data transfer

■ 0x6 (FRAME_07BITS): 7-bit serial data transfer

■ 0x7 (FRAME_08BITS): 8-bit serial data transfer

■ 0x8 (FRAME_09BITS): 9-bit serial data transfer

■ 0x9 (FRAME_10BITS): 10-bit serial data transfer

■ 0xa (FRAME_11BITS): 11-bit serial data transfer

■ 0xb (FRAME_12BITS): 12-bit serial data transfer

■ 0xc (FRAME_13BITS): 13-bit serial data transfer

■ 0xd (FRAME_14BITS): 14-bit serial data transfer

■ 0xe (FRAME_15BITS): 15-bit serial data transfer

■ 0xf (FRAME_16BITS): 16-bit serial data transfer

Value After Reset: "(SSI_MAX_XFER_SIZE==16) ? \"0x7\"
: \"0x0\""
Exists: Always
Memory Access: "(SSI_MAX_XFER_SIZE==16) ? \"read-
write\" : \"read-only\""

Table 5-6 Fields for Register: CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

134 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.2 CTRLR1

■ Name: Control Register 1

■ Description: This register exists only when the DW_apb_ssi is configured as a master device. When
the DW_apb_ssi is configured as a serial slave, writing to this location has no effect; reading from this
location returns 0. Control register 1 controls the end of serial transfers when in receive-only mode. It
is impossible to write to this register when the DW_apb_ssi is enabled. The DW_apb_ssi is enabled
and disabled by writing to the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x4

■ Exists: SSI_IS_MASTER == 1

31
:1

6

15
:0

R
S

V
D

_C
T

R
LR

1

N
D

F

Table 5-7 Fields for Register: CTRLR1

Bits Name
Memory
Access Description

31:16 RSVD_CTRLR1 R CTRLR1 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

15:0 NDF R/W Number of Data Frames.
When TMOD = 10 or TMOD = 11 , this register field sets the
number of data frames to be continuously received by the
DW_apb_ssi. The DW_apb_ssi continues to receive serial
data until the number of data frames received is equal to this
register value plus 1, which enables you to receive up to 64
KB of data in a continuous transfer.
When the DW_apb_ssi is configured as a serial slave, the
transfer continues for as long as the slave is selected.
Therefore, this register serves no purpose and is not present
when the DW_apb_ssi is configured as a serial slave.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 135SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.3 SSIENR

■ Name: SSI Enable Register

■ Description: This register enables and disables the DW_apb_ssi.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x8

■ Exists: Always

31
:1

0

R
S

V
D

_S
S

IE
N

R

S
S

I_
E

N

Table 5-8 Fields for Register: SSIENR

Bits Name
Memory
Access Description

31:1 RSVD_SSIENR R SSIENR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

0 SSI_EN R/W SSI Enable.
 Enables and disables all DW_apb_ssi operations. When
disabled, all serial transfers are halted immediately. Transmit
and receive FIFO buffers are cleared when the device is
disabled. It is impossible to program some of the
DW_apb_ssi control registers when enabled. When disabled,
the ssi_sleep output is set (after delay) to inform the system
that it is safe to remove the ssi_clk, thus saving power
consumption in the system.
Values:

■ 0x0 (DISABLE): Disables Serial Transfer

■ 0x1 (ENABLED): Enables Serial Transfer

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

136 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.4 MWCR

■ Name: Microwire Control Register

■ Description: This register controls the direction of the data word for the half-duplex Microwire serial
protocol. It is impossible to write to this register when the DW_apb_ssi is enabled. The DW_apb_ssi
is enabled and disabled by writing to the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0xc

■ Exists: Always

31
:3

2 1 0

R
S

V
D

_M
W

C
R

M
H

S

M
D

D

M
W

M
O

D

Table 5-9 Fields for Register: MWCR

Bits Name
Memory
Access Description

31:3 RSVD_MWCR R MWCR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

2 MHS R/W Microwire Handshaking.
Relevant only when the DW_apb_ssi is configured as a
serial-master device. When configured as a serial slave, this
bit field has no functionality. Used to enable and disable the
busy/ready handshaking interface for the Microwire protocol.
When enabled, the DW_apb_ssi checks for a ready status
from the target slave, after the transfer of the last data/control
bit, before clearing the BUSY status in the SR register.
Values:

■ 0x0 (DISABLE): Handshaking interface is disabled

■ 0x1 (ENABLED): Handshaking interface is enabled

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 137SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

1 MDD R/W Microwire Control.
Defines the direction of the data word when the Microwire
serial protocol is used. When this bit is set to 0, the data
word is received by the DW_apb_ssi MacroCell from the
external serial device. When this bit is set to 1, the data word
is transmitted from the DW_apb_ssi MacroCell to the
external serial device.
Values:
■ 0x0 (RECEIVE): SSI receives data

■ 0x1 (TRANSMIT): SSI transmits data

Value After Reset: 0x0
Exists: Always

0 MWMOD R/W Microwire Transfer Mode.
Defines whether the Microwire transfer is sequential or non-
sequential. When sequential mode is used, only one control
word is needed to transmit or receive a block of data words.
When non-sequential mode is used, there must be a control
word for each data word that is transmitted or received.
Values:
■ 0x0 (NON_SEQUENTIAL): Non-Sequential Microwire

Transfer

■ 0x1 (SEQUENTIAL): Sequential Microwire Transfer

Value After Reset: 0x0
Exists: Always

Table 5-9 Fields for Register: MWCR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

138 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.5 SER

■ Name: Slave Enable Register

■ Description: This register is valid only when the DW_apb_ssi is configured as a master device. When
the DW_apb_ssi is configured as a serial slave, writing to this location has no effect; reading from this
location returns 0. The register enables the individual slave select output lines from the DW_apb_ssi
master. Up to 16 slave-select output pins are available on the DW_apb_ssi master. Register bits can be
set or cleared when SSI_EN=0.

If SSI_EN=1, then register bits can be set (to delay the slave select assertion while TX FIFO is getting
filled) but cannot be cleared.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x10

■ Exists: SSI_IS_MASTER == 1
31

:y

x:
0

R
S

V
D

_S
E

R

S
E

R

Table 5-10 Fields for Register: SER

Bits Name
Memory
Access Description

31:y RSVD_SER R SER Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: SSI_NUM_SLAVES

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 139SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

x:0 SER * Varies Slave Select Enable Flag.
Each bit in this register corresponds to a slave select line
(ss_x_n) from the DW_apb_ssi master. When a bit in this
register is set (1), the corresponding slave select line from
the master is activated when a serial transfer begins. It
should be noted that setting or clearing bits in this register
have no effect on the corresponding slave select outputs until
a transfer is started. Before beginning a transfer, you should
enable the bit in this register that corresponds to the slave
device with which the master wants to communicate. When
not operating in broadcast mode, only one bit in this field
should be set.
Values:
■ 0x0 (NOT_SELECTED): No slave selected

■ 0x1 (SELECTED): Slave is selected

Value After Reset: 0x0
Exists: Always
Range Variable[x]: SSI_NUM_SLAVES - 1
Memory Access: "(SSI_IS_MASTER==1) ? \"read-write\" :
\"read-only\""

Table 5-10 Fields for Register: SER (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

140 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.6 BAUDR

■ Name: Baud Rate Select

■ Description: This register is valid only when the DW_apb_ssi is configured as a master device. When
the DW_apb_ssi is configured as a serial slave, writing to this location has no effect; reading from this
location returns 0. The register derives the frequency of the serial clock that regulates the data
transfer. The 16-bit field in this register defines the ssi_clk divider value. It is impossible to write to
this register when the DW_apb_ssi is enabled. The DW_apb_ssi is enabled and disabled by writing to
the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x14

■ Exists: SSI_IS_MASTER == 1

31
:1

6

15
:0

R
S

V
D

_B
A

U
D

R

S
C

K
D

V

Table 5-11 Fields for Register: BAUDR

Bits Name
Memory
Access Description

31:16 RSVD_BAUDR R BAUDR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 141SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

15:0 SCKDV R/W SSI Clock Divider.
The LSB for this field is always set to 0 and is unaffected by a
write operation, which ensures an even value is held in this
register. If the value is 0, the serial output clock (sclk_out) is
disabled. The frequency of the sclk_out is derived from the
following equation:

 Fsclk_out = Fssi_clk/SCKDV
where SCKDV is any even value between 2 and 65534. For
example:

for Fssi_clk = 3.6864MHz and SCKDV =2 Fsclk_out =
3.6864/2 = 1.8432MHz
Value After Reset: 0x0
Exists: Always

Table 5-11 Fields for Register: BAUDR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

142 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.7 TXFTLR

■ Name: Transmit FIFO Threshold Level

■ Description: This register controls the threshold value for the transmit FIFO memory. The
DW_apb_ssi is enabled and disabled by writing to the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x18

■ Exists: Always

31
:y

x:
0

R
S

V
D

_T
X

F
T

LR

T
F

T

Table 5-12 Fields for Register: TXFTLR

Bits Name
Memory
Access Description

31:y RSVD_TXFTLR R TXFTLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: TX_ABW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 143SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

x:0 TFT R/W Transmit FIFO Threshold.
Controls the level of entries (or below) at which the transmit
FIFO controller triggers an interrupt. The FIFO depth is
configurable in the range 2-256; this register is sized to the
number of address bits needed to access the FIFO. If you
attempt to set this value greater than or equal to the depth of
the FIFO, this field is not written and retains its current value.
When the number of transmit FIFO entries is less than or
equal to this value, the transmit FIFO empty interrupt is
triggered. For information on the Transmit FIFO Threshold
values, see the "Master SPI and SSP Serial Transfers" in the
DW_apb_ssi Databook.
ssi_txe_intr is asserted when TFT or less data entries are
present in transmit FIFO
Value After Reset: 0x0
Exists: Always
Range Variable[x]: TX_ABW - 1

Table 5-12 Fields for Register: TXFTLR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

144 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.8 RXFTLR

■ Name: Receive FIFO Threshold Level

■ Description: This register controls the threshold value for the receive FIFO memory. The
DW_apb_ssi is enabled and disabled by writing to the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x1c

■ Exists: Always

31
:y

x:
0

R
S

V
D

_R
X

F
T

LR

R
F

T

Table 5-13 Fields for Register: RXFTLR

Bits Name
Memory
Access Description

31:y RSVD_RXFTLR R RXFTLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: RX_ABW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 145SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

x:0 RFT R/W Receive FIFO Threshold.
Controls the level of entries (or above) at which the receive
FIFO controller triggers an interrupt. The FIFO depth is
configurable in the range 2-256. This register is sized to the
number of address bits needed to access the FIFO. If you
attempt to set this value greater than the depth of the FIFO,
this field is not written and retains its current value. When the
number of receive FIFO entries is greater than or equal to
this value + 1, the receive FIFO full interrupt is triggered. For
information on the Receive FIFO Threshold values, see the
"Master SPI and SSP Serial Transfers" in the DW_apb_ssi
Databook.
ssi_rxf_intr is asserted when RFT or more data entries are
present in receive FIFO.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: RX_ABW - 1

Table 5-13 Fields for Register: RXFTLR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

146 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.9 TXFLR

■ Name: Transmit FIFO Level Register

■ Description: This register contains the number of valid data entries in the transmit FIFO memory.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x20

■ Exists: Always

31
:y

x:
0

R
S

V
D

_T
X

F
LR

T
X

T
F

L

Table 5-14 Fields for Register: TXFLR

Bits Name
Memory
Access Description

31:y RSVD_TXFLR R TXFLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: TX_ABW + 1

x:0 TXTFL R Transmit FIFO Level.
Contains the number of valid data entries in the transmit
FIFO.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: TX_ABW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 147SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.10 RXFLR

■ Name: Receive FIFO Level Register

■ Description: This register contains the number of valid data entries in the receive FIFO memory.
This register can be ready at any time.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x24

■ Exists: Always

31
:y

x:
0

R
S

V
D

_R
X

F
LR

R
X

T
F

L

Table 5-15 Fields for Register: RXFLR

Bits Name
Memory
Access Description

31:y RSVD_RXFLR R RXFLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[y]: RX_ABW + 1

x:0 RXTFL R Receive FIFO Level.
Contains the number of valid data entries in the receive
FIFO.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: RX_ABW

https://solvnet.synopsys.com
www.designware.com

148 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.11 SR

■ Name: Status Register

■ Description: This is a read-only register used to indicate the current transfer status, FIFO status, and
any transmission/reception errors that may have occurred. The status register may be read at any
time. None of the bits in this register request an interrupt.

Reset Value: 0x6

■ Size: 32 bits

■ Offset: 0x28

■ Exists: Always

31
:7

6 5 4 3 2 1 0

R
S

V
D

_S
R

D
C

O
L

T
X

E

R
F

F

R
F

N
E

T
F

E

T
F

N
F

B
U

S
Y

Table 5-16 Fields for Register: SR

Bits Name
Memory
Access Description

31:7 RSVD_SR R SR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

6 DCOL R Data Collision Error.
Relevant only when the DW_apb_ssi is configured as a
master device. This bit will be set if ss_in_n input is asserted
by other master, when the DW_apb_ssi master is in the
middle of the transfer. This informs the processor that the
last data transfer was halted before completion. This bit is
cleared when read.
Values:
■ 0x0 (NO_ERROR_CONDITION): No Error

■ 0x1 (TX_COLLISION_ERROR): Transmit Data Collision
Error

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 149SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5 TXE R Transmission Error.
Set if the transmit FIFO is empty when a transfer is started.
This bit can be set only when the DW_apb_ssi is configured
as a slave device. Data from the previous transmission is
resent on the txd line. This bit is cleared when read.
Values:
■ 0x0 (NO_ERROR): No Error

■ 0x1 (TX_ERROR): Transmission Error

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 0
Volatile: true

4 RFF R Receive FIFO Full.
When the receive FIFO is completely full, this bit is set.
When the receive FIFO contains one or more empty location,
this bit is cleared.
Values:

■ 0x0 (NOT_FULL): Receive FIFO is not full

■ 0x1 (FULL): Receive FIFO is full

Value After Reset: 0x0
Exists: Always
Volatile: true

3 RFNE R Receive FIFO Not Empty.
Set when the receive FIFO contains one or more entries and
is cleared when the receive FIFO is empty. This bit can be
polled by software to completely empty the receive FIFO.
Values:
■ 0x0 (EMPTY): Receive FIFO is empty

■ 0x1 (NOT_EMPTY): Receive FIFO is not empty

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-16 Fields for Register: SR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

150 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

2 TFE R Transmit FIFO Empty.
When the transmit FIFO is completely empty, this bit is set.
When the transmit FIFO contains one or more valid entries,
this bit is cleared. This bit field does not request an interrupt.
Values:
■ 0x0 (NOT_EMPTY): Transmit FIFO is not empty

■ 0x1 (EMPTY): Transmit FIFO is empty

Value After Reset: 0x1
Exists: Always
Volatile: true

1 TFNF R Transmit FIFO Not Full.
 Set when the transmit FIFO contains one or more empty
locations, and is cleared when the FIFO is full.
Values:

■ 0x0 (FULL): Transmit FIFO is full

■ 0x1 (NOT_FULL): Transmit FIFO is not Full

Value After Reset: 0x1
Exists: Always
Volatile: true

0 BUSY R SSI Busy Flag.
When set, indicates that a serial transfer is in progress; when
cleared indicates that the DW_apb_ssi is idle or disabled.
Values:

■ 0x0 (INACTIVE): DW_apb_ssi is idle or disabled

■ 0x1 (ACTIVE): DW_apb_ssi is actively transferring data

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-16 Fields for Register: SR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 151SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.12 IMR

■ Name: Interrupt Mask Register

■ Description: This read/write reigster masks or enables all interrupts generated by the DW_apb_ssi.
When the DW_apb_ssi is configured as a slave device, the MSTIM bit field is not present. This
changes the reset value from 0x3F for serial-master configurations to 0x1F for serial-slave
configurations.

Reset Value: (SSI_IS_MASTER == 1) ? 0x3F : 0x1F

■ Size: 32 bits

■ Offset: 0x2c

■ Exists: Always
31

:6

5 4 3 2 1 0

R
S

V
D

_I
M

R

M
S

T
IM

R
X

F
IM

R
X

O
IM

R
X

U
IM

T
X

O
IM

T
X

E
IM

Table 5-17 Fields for Register: IMR

Bits Name
Memory
Access Description

31:6 RSVD_IMR R IMR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

5 MSTIM * Varies Multi-Master Contention Interrupt Mask. This bit field is not
present if the DW_apb_ssi is configured as a serial-slave
device.
Values:

■ 0x0 (MASKED): ssi_mst_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_mst_intr interrupt is not masked

Value After Reset: "(SSI_IS_MASTER==1) ? \"1\" : \"0\""
Exists: SSI_IS_MASTER == 1
Memory Access: "(SSI_IS_MASTER==1) ? \"read-write\" :
\"read-only\""

https://solvnet.synopsys.com
www.designware.com

152 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

4 RXFIM R/W Receive FIFO Full Interrupt Mask
Values:

■ 0x0 (MASKED): ssi_rxf_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_rxf_intr interrupt is not masked

Value After Reset: 0x1
Exists: Always

3 RXOIM R/W Receive FIFO Overflow Interrupt Mask
Values:

■ 0x0 (MASKED): ssi_rxo_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_rxo_intr interrupt is not masked

Value After Reset: 0x1
Exists: Always

2 RXUIM R/W Receive FIFO Underflow Interrupt Mask
Values:
■ 0x0 (MASKED): ssi_rxu_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_rxu_intr interrupt is not masked

Value After Reset: 0x1
Exists: Always

1 TXOIM R/W Transmit FIFO Overflow Interrupt Mask
Values:

■ 0x0 (MASKED): ssi_txo_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_txo_intr interrupt is not masked

Value After Reset: 0x1
Exists: Always

0 TXEIM R/W Transmit FIFO Empty Interrupt Mask
Values:

■ 0x0 (MASKED): ssi_txe_intr interrupt is masked

■ 0x1 (UNMASKED): ssi_txe_intr interrupt is not masked

Value After Reset: 0x1
Exists: Always

Table 5-17 Fields for Register: IMR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 153SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.13 ISR

■ Name: Interrupt Status Register

■ Description: This register reports the status of the DW_apb_ssi interrupts after they have been
masked.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x30

■ Exists: Always

31
:6

5 4 3 2 1 0

R
S

V
D

_I
S

R

M
S

T
IS

R
X

F
IS

R
X

O
IS

R
X

U
IS

T
X

O
IS

T
X

E
IS

Table 5-18 Fields for Register: ISR

Bits Name
Memory
Access Description

31:6 RSVD_ISR R ISR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

5 MSTIS R Multi-Master Contention Interrupt Status. This bit field is not
present if the DW_apb_ssi is configured as a serial-slave
device.
Values:

■ 0x0 (INACTIVE): ssi_mst_intr interrupt not active after
masking

■ 0x1 (ACTIVE): ssi_mst_intr interrupt is active after
masking

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

154 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

4 RXFIS R Receive FIFO Full Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_rxf_intr interrupt is not active after
masking

■ 0x1 (ACTIVE): ssi_rxf_intr interrupt is full after masking

Value After Reset: 0x0
Exists: Always
Volatile: true

3 RXOIS R Receive FIFO Overflow Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_rxo_intr interrupt is not active after
masking

■ 0x1 (ACTIVE): ssi_rxo_intr interrupt is active after
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

2 RXUIS R Receive FIFO Underflow Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_rxu_intr interrupt is not active after
masking

■ 0x1 (ACTIVE): ssi_rxu_intr interrupt is active after
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

1 TXOIS R Transmit FIFO Overflow Interrupt Status
Values:
■ 0x0 (INACTIVE): ssi_txo_intr interrupt is not active after

masking

■ 0x1 (ACTIVE): ssi_txo_intr interrupt is active after
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-18 Fields for Register: ISR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 155SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

0 TXEIS R Transmit FIFO Empty Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_txe_intr interrupt is not active after
masking

■ 0x1 (ACTIVE): ssi_txe_intr interrupt is active after
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-18 Fields for Register: ISR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

156 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.14 RISR

■ Name: Raw Interrupt Status Register

■ Description: This read-only register reports the status of the DW_apb_ssi interrupts prior to
masking.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x34

■ Exists: Always

31
:6

5 4 3 2 1 0

R
S

V
D

_R
IS

R

M
S

T
IR

R
X

F
IR

R
X

O
IR

R
X

U
IR

T
X

O
IR

T
X

E
IR

Table 5-19 Fields for Register: RISR

Bits Name
Memory
Access Description

31:6 RSVD_RISR R RISR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

5 MSTIR R Multi-Master Contention Raw Interrupt Status. This bit field is
not present if the DW_apb_ssi is configured as a serial-slave
device.
Values:

■ 0x0 (INACTIVE): ssi_mst_intr interrupt is not active prior
to masking

■ 0x1 (ACTIVE): ssi_mst_intr interrupt is active prior
masking

Value After Reset: 0x0
Exists: SSI_IS_MASTER == 1
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 157SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

4 RXFIR R Receive FIFO Full Raw Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_rxf_intr interrupt is not active prior to
masking

■ 0x1 (ACTIVE): ssi_rxf_intr interrupt is active prior to
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

3 RXOIR R Receive FIFO Overflow Raw Interrupt Status
Values:

■ 0x1 (ACTIVE): ssi_rxo_intr interrupt is not active prior to
masking

■ 0x0 (INACTIVE): ssi_rxo_intr interrupt is active prior
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

2 RXUIR R Receive FIFO Underflow Raw Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_rxu_intr interrupt is not active prior
to masking

■ 0x1 (ACTIVE): ssi_rxu_intr interrupt is active prior to
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

1 TXOIR R Transmit FIFO Overflow Raw Interrupt Status
Values:
■ 0x0 (INACTIVE): ssi_txo_intr interrupt is not active prior

to masking

■ 0x1 (ACTIVE): ssi_txo_intr interrupt is active prior
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-19 Fields for Register: RISR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

158 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

0 TXEIR R Transmit FIFO Empty Raw Interrupt Status
Values:

■ 0x0 (INACTIVE): ssi_txe_intr interrupt is not active prior
to masking

■ 0x1 (ACTIVE): ssi_txe_intr interrupt is active prior
masking

Value After Reset: 0x0
Exists: Always
Volatile: true

Table 5-19 Fields for Register: RISR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 159SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.15 TXOICR

■ Name: Transmit FIFO Overflow Interrupt Clear Registers.

■ Description: Transmit FIFO Overflow Interrupt Clear Register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x38

■ Exists: Always

31
:1

0

R
S

V
D

_T
X

O
IC

R

T
X

O
IC

R

Table 5-20 Fields for Register: TXOICR

Bits Name
Memory
Access Description

31:1 RSVD_TXOICR R TXOICR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 TXOICR R Clear Transmit FIFO Overflow Interrupt.
This register reflects the status of the interrupt. A read from
this register clears the ssi_txo_intr interrupt; writing has no
effect.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

160 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.16 RXOICR

■ Name: Receive FIFO Overflow Interrupt Clear Register

■ Description: Receive FIFO Overflow Interrupt Clear Register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x3c

■ Exists: Always

31
:1

0

R
S

V
D

_R
X

O
IC

R

R
X

O
IC

R

Table 5-21 Fields for Register: RXOICR

Bits Name
Memory
Access Description

31:1 RSVD_RXOICR R RXOICR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RXOICR R Clear Receive FIFO Overflow Interrupt.
This register reflects the status of the interrupt. A read from
this register clears the ssi_rxo_intr interrupt; writing has no
effect.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 161SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.17 RXUICR

■ Name: Receive FIFO Underflow Interrupt Clear Register

■ Description: Receive FIFO Underflow Interrupt Clear Register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x40

■ Exists: Always

31
:1

0

R
S

V
D

_R
X

U
IC

R

R
X

U
IC

R

Table 5-22 Fields for Register: RXUICR

Bits Name
Memory
Access Description

31:1 RSVD_RXUICR R RXUICR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 RXUICR R Clear Receive FIFO Underflow Interrupt.
This register reflects the status of the interrupt. A read from
this register clears the ssi_rxu_intr interrupt; writing has no
effect.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

162 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.18 MSTICR

■ Name: Multi-Master Interrupt Clear Register

■ Description: Multi-Master Interrupt Clear Register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x44

■ Exists: Always

31
:1

0

R
S

V
D

_M
S

T
IC

R

M
S

T
IC

R

Table 5-23 Fields for Register: MSTICR

Bits Name
Memory
Access Description

31:1 RSVD_MSTICR R MSTICR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 MSTICR R Clear Multi-Master Contention Interrupt.
This register reflects the status of the interrupt. A read from
this register clears the ssi_mst_intr interrupt; writing has no
effect.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 163SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.19 ICR

■ Name: Interrupt Clear Register

■ Description: Interrupt Clear Register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x48

■ Exists: Always

31
:1

0

R
S

V
D

_I
C

R

IC
R

Table 5-24 Fields for Register: ICR

Bits Name
Memory
Access Description

31:1 RSVD_ICR R ICR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Volatile: true

0 ICR R Clear Interrupts.
This register is set if any of the interrupts below are active. A
read clears the ssi_txo_intr, ssi_rxu_intr, ssi_rxo_intr, and
the ssi_mst_intr interrupts. Writing to this register has no
effect.
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

164 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.20 DMACR

■ Name: DMA Control Register

■ Description: This register is only valid when DW_apb_ssi is configured with a set of DMA Controller
interface signals (SSI_HAS_DMA = 1). When DW_apb_ssi is not configured for DMA operation, this
register will not exist and writing to the register's address will have no effect; reading from this
register address will return zero. The register is used to enable the DMA Controller interface
operation.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x4c

■ Exists: SSI_HAS_DMA == 1

31
:2

1 0

R
S

V
D

_D
M

A
C

R

T
D

M
A

E

R
D

M
A

E

Table 5-25 Fields for Register: DMACR

Bits Name
Memory
Access Description

31:2 RSVD_DMACR R DMACR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

1 TDMAE R/W Transmit DMA Enable.
This bit enables/disables the transmit FIFO DMA channel.
Values:

■ 0x0 (DISABLE): Transmit DMA disabled

■ 0x1 (ENABLED): Transmit DMA enabled

Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 165SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

0 RDMAE R/W Receive DMA Enable.
This bit enables/disables the receive FIFO DMA channel
Values:
■ 0x0 (DISABLE): Receive DMA disabled

■ 0x1 (ENABLED): Receive DMA enabled

Value After Reset: 0x0
Exists: Always

Table 5-25 Fields for Register: DMACR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

166 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.21 DMATDLR

■ Name: DMA Transmit Data Level

■ Description: This register is only valid when the DW_apb_ssi is configured with a set of DMA
interface signals (SSI_HAS_DMA = 1). When DW_apb_ssi is not configured for DMA operation, this
register will not exist and writing to its address will have no effect; reading from its address will
return zero.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x50

■ Exists: SSI_HAS_DMA == 1

31
:y

x:
0

R
S

V
D

_D
M

A
T

D
LR

D
M

A
T

D
L

Table 5-26 Fields for Register: DMATDLR

Bits Name
Memory
Access Description

31:y RSVD_DMATDLR R DMATDLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: TX_ABW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 167SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

x:0 DMATDL R/W Transmit Data Level.
This bit field controls the level at which a DMA request is
made by the transmit logic. It is equal to the watermark level;
that is, the dma_tx_req signal is generated when the number
of valid data entries in the transmit FIFO is equal to or below
this field value, and TDMAE = 1. For information on the
DMATDL decode values, see the "Slave SPI and SSP Serial
Transfers" section in the DW_apb_ssi Databook.
dma_tx_req is asserted when DMATDL or less data entries
are present in the transmit FIFO
Value After Reset: 0x0
Exists: Always
Range Variable[x]: TX_ABW - 1

Table 5-26 Fields for Register: DMATDLR (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

168 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.22 DMARDLR

■ Name: DMA Receive Data Level

■ Description: This register is only valid when DW_apb_ssi is configured with a set of DMA interface
signals (SSI_HAS_DMA = 1). When DW_apb_ssi is not configured for DMA operation, this register
will not exist and writing to its address will have no effect; reading from its address will return zero.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x54

■ Exists: SSI_HAS_DMA == 1

31
:y

x:
0

R
S

V
D

_D
M

A
R

D
LR

D
M

A
R

D
L

Table 5-27 Fields for Register: DMARDLR

Bits Name
Memory
Access Description

31:y RSVD_DMARDLR R DMARDLR Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always
Range Variable[y]: RX_ABW

x:0 DMARDL R/W Receive Data Level.
This bit field controls the level at which a DMA request is
made by the receive logic. The watermark level =
DMARDL+1; that is, dma_rx_req is generated when the
number of valid data entries in the receive FIFO is equal to or
above this field value + 1, and RDMAE=1. For information on
the DMARDL decode values, see the "Slave SPI and SSP
Serial Transfers" section in the DW_apb_ssi Databook.
dma_rx_req is asserted when DMARDL or more valid data
entries are present in the receive FIFO.
Value After Reset: 0x0
Exists: Always
Range Variable[x]: RX_ABW - 1

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 169SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.23 IDR

■ Name: Identification Register

■ Description: This register contains the peripherals identification code, which is written into the
register at configuration time using coreConsultant.

Reset Value: SSI_ID

■ Size: 32 bits

■ Offset: 0x58

■ Exists: Always

31
:0

ID
C

O
D

E

Table 5-28 Fields for Register: IDR

Bits Name
Memory
Access Description

31:0 IDCODE R Identification code.
 The register contains the peripheral's identification code,
which is written into the register at configuration time using
CoreConsultant.
Value After Reset: SSI_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

170 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.24 SSI_VERSION_ID

■ Name: coreKit version ID Register

■ Description: This read-only register stores the specific DW_apb_ssi component version.

Reset Value: SSI_VERSION_ID

■ Size: 32 bits

■ Offset: 0x5c

■ Exists: Always

31
:0

S
S

I_
C

O
M

P
_V

E
R

S
IO

N

Table 5-29 Fields for Register: SSI_VERSION_ID

Bits Name
Memory
Access Description

31:0 SSI_COMP_VERSION R Contains the hex representation of the Synopsys component
version. Consists of ASCII value for each number in the
version, followed by *. For example 32_30_31_2A represents
the version 2.01*.
Value After Reset: SSI_VERSION_ID
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 171SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.25 DRx (for x = 0; x <= 35)

■ Name: Data Register x

■ Description: The DW_apb_ssi data register is a 16/32-bit (depending on SSI_MAX_XFER_SIZE)
read/write buffer for the transmit/receive FIFOs. If the configuration parameter
SSI_MAX_XFER_SIZE is set to 32, then all 32 bits are valid, otherwise, only 16 bits ([15:0]) of the
register are valid. When the register is read, data in the receive FIFO buffer is accessed. When it is
written to, data are moved into the transmit FIFO buffer; a write can occur only when SSI_EN = 1.
FIFOs are reset when SSI_EN = 0.NOTE: The DR register in the DW_apb_ssi occupies thirty-six 32-bit
address locations of the memory map to facilitate AHB burst transfers. Writing to any of these
address locations has the same effect as pushing the data from the pwdata bus into the transmit FIFO.
Reading from any of these locations has the same effect as popping data from the receive FIFO onto
the prdata bus. The FIFO buffers on the DW_apb_ssi are not addressable.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0x60

■ Exists: Always

31
:1

6

x:
0

R
S

V
D

_D
R

D
R

Table 5-30 Fields for Register: DRx (for x = 0; x <= 35)

Bits Name
Memory
Access Description

31:16 RSVD_DR R DR{i} Reserved bits - Read Only
Value After Reset: 0x0
Exists: SSI_MAX_XFER_SIZE == 16
Volatile: true

https://solvnet.synopsys.com
www.designware.com

172 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

x:0 DR R/W Data Register. When writing to this register, you must right-
justify the data. Read data are automatically right-justified. If
SSI_MAX_XFER_SIZE configuration parameter is set to 32,
all 32 bits are valid. Otherwise, only 16 bits ([15:0]) of the
register are valid. Read = Receive FIFO buffer Write =
Transmit FIFO buffer.
Value After Reset: 0x0
Exists: Always
Volatile: true
Range Variable[x]: SSI_MAX_XFER_SIZE - 1

Table 5-30 Fields for Register: DRx (for x = 0; x <= 35) (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 173SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.26 RX_SAMPLE_DLY

■ Name: RX Sample Delay Register

■ Description: This register is only valid when the DW_apb_ssi is configured with rxd sample delay
logic (SSI_HAS_RX_SAMPLE_DELAY==1). When the DW_apb_ssi is not configured with rxd
sample delay logic, this register will not exist and writing to its address location will have no effect;
reading from its address will return zero.

This register control the number of ssi_clk cycles that are delayed (from the default sample time)
before the actual sample of the rxd input occurs. It is impossible to write to this register when the
DW_apb_ssi is enabled. The DW_apb_ssi is enabled and disabled by writing to the SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0xf0

■ Exists: SSI_HAS_RX_SAMPLE_DELAY == 1
31

:8

7:
0

R
S

V
D

_R
X

_S
A

M
P

LE
_D

LY

R
S

D

Table 5-31 Fields for Register: RX_SAMPLE_DLY

Bits Name
Memory
Access Description

31:8 RSVD_RX_SAMPLE_DLY R SAMPLE_DLY Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

174 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

7:0 RSD R/W Rxd Sample Delay.
This register is used to delay the sample of the rxd input port.
Each value represents a single ssi_clk delay on the sample
of rxd.
Note: If this register is programmed with a value that
exceeds the depth of the internal shift registers
(SSI_RX_DLY_SR_DEPTH) zero delay will be applied to the
rxd sample.
Value After Reset: 0x0
Exists: Always

Table 5-31 Fields for Register: RX_SAMPLE_DLY (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 175SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.27 SPI_CTRLR0

■ Name: SPI Control Register

■ Description: This register is valid only when SSI_SPI_MODE is either set to "Dual" or "Quad" or
"Octal" mode. This register is used to control the serial data transfer in SPI mode of operation. The
register is only relevant when SPI_FRF is set to either 01 or 10 or 11. It is not possible to write to this
register when the DW_apb_ssi is enabled (SSI_EN=1). The DW_apb_ssi is enabled and disabled by
writing to the SSIENR register.

Reset Value: 0x00000200

■ Size: 32 bits

■ Offset: 0xf4

■ Exists: SSI_SPI_MODE != 0

31
:1

9

18 17 16 15
:1

1

10 9:
8

7:
6

5:
2

1:
0

R
S

V
D

_S
P

I_
C

T
R

LR
0

S
P

I_
R

X
D

S
_E

N

IN
S

T
_D

D
R

_E
N

S
P

I_
D

D
R

_E
N

W
A

IT
_C

Y
C

LE
S

R
S

V
D

_S
P

I_
C

T
R

LR
0_

10

IN
S

T
_L

R
S

V
D

_S
P

I_
C

T
R

LR
0_

6_
7

A
D

D
R

_L

T
R

A
N

S
_T

Y
P

E

Table 5-32 Fields for Register: SPI_CTRLR0

Bits Name
Memory
Access Description

31:19 RSVD_SPI_CTRLR0 R SPI_CTRLR0 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

18 SPI_RXDS_EN * Varies Read data strobe enable bit.
 Once this bit is set to 1 DW_apb_ssi will use Read data
strobe (rxds) to capture read data in DDR mode.
Value After Reset: 0x0
Exists: Always
Memory Access: "(SSI_HAS_RXDS==0) ? \"read-only\":
\"read-write\""

https://solvnet.synopsys.com
www.designware.com

176 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

17 INST_DDR_EN * Varies Instruction DDR Enable bit.
 This will enable Dual-data rate transfer for Instruction phase.
Value After Reset: 0x0
Exists: Always
Memory Access: "(SSI_HAS_DDR==0) ? \"read-only\":
\"read-write\""

16 SPI_DDR_EN * Varies SPI DDR Enable bit.
 This will enable Dual-data rate transfers in Dual/Quad/Octal
frame formats of SPI.
Value After Reset: 0x0
Exists: Always
Memory Access: "(SSI_HAS_DDR==0) ? \"read-only\":
\"read-write\""

15:11 WAIT_CYCLES R/W Wait cycles
Number of wait cycles in Dual/Quad/Octal mode between
control frames transmit and data reception. This value is
specified as number of SPI clock cycles. For information on
the WAIT_CYCLES decode value, see "Read Operation in
Enhanced SPI Modes" section in the DW_apb_ssi Databook.
Value After Reset: 0x0
Exists: Always

10 RSVD_SPI_CTRLR0_10 R CTRLR0_10 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

9:8 INST_L R/W Instruction Length
Dual/Quad/Octal mode instruction length in bits.
Values:

■ 0x0 (INST_L_0): 0-bit (No Instruction)

■ 0x1 (INST_L_1): 4-bit Instruction

■ 0x2 (INST_L_2): 8-bit Instruction

■ 0x3 (INST_L_3): 16-bit Instruction

Value After Reset: 0x2
Exists: Always

7:6 RSVD_SPI_CTRLR0_6_7 R CTRLR0_6_7 Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

Table 5-32 Fields for Register: SPI_CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 177SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5:2 ADDR_L R/W Address Length.
This bit defines Length of Address to be transmitted. Only
after this much bits are programmed in to the FIFO the
transfer can begin. For information on the ADDR_Ldecode
value, see "Read Operation in Enhanced SPI Modes"
section in the DW_apb_ssi Databook.
Values:
■ 0x0 (ADDR_L_0): 0-bit Address Width

■ 0x1 (ADDR_L_1): 4-bit Address Width

■ 0x2 (ADDR_L_2): 8-bit Address Width

■ 0x3 (ADDR_L_3): 12-bit Address Width

■ 0x4 (ADDR_L_4): 16-bit Address Width

■ 0x5 (ADDR_L_5): 20-bit Address Width

■ 0x6 (ADDR_L_6): 24-bit Address Width

■ 0x7 (ADDR_L_7): 28-bit Address Width

■ 0x8 (ADDR_L_8): 32-bit Address Width

■ 0x9 (ADDR_L_9): 36-bit Address Width

■ 0xa (ADDR_L_10): 40-bit Address Width

■ 0xb (ADDR_L_11): 44-bit Address Width

■ 0xc (ADDR_L_12): 48-bit Address Width

■ 0xd (ADDR_L_13): 52-bit Address Width

■ 0xe (ADDR_L_14): 56-bit Address Width

■ 0xf (ADDR_L_15): 60-bit Address Width

Value After Reset: 0x0
Exists: Always

1:0 TRANS_TYPE R/W Address and instruction transfer format.
Selects whether DW_apb_ssi will transmit
instruction/address either in Standard SPI mode or the SPI
mode selected in CTRLR0.SPI_FRF field. 00 - Instruction
and Address will be sent in Standard SPI Mode.
01 - Instruction will be sent in Standard SPI Mode and
Address will be sent in the mode specified by
CTRLR0.SPI_FRF.
10 - Both Instruction and Address will be sent in the mode
specified by SPI_FRF. 11 - Reserved.
Value After Reset: 0x0
Exists: Always

Table 5-32 Fields for Register: SPI_CTRLR0 (Continued)

Bits Name
Memory
Access Description

https://solvnet.synopsys.com
www.designware.com

178 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

5.1.28 TXD_DRIVE_EDGE

■ Name: Transmit Drive Edge Register

■ Description: This Register is valid only when SSI_HAS_DDR is equal to 1. This register is used to
control the driving edge of TXD register in DDR mode. It is not possible to write to this register when
the DW_apb_ssi is enabled (SSI_EN=1). The DW_apb_ssi is enabled and disabled by writing to the
SSIENR register.

Reset Value: 0x0

■ Size: 32 bits

■ Offset: 0xf8

■ Exists: SSI_HAS_DDR != 0

31
:8

7:
0

R
S

V
D

_T
X

D
_D

R
IV

E
_E

D
G

E

T
D

E

Table 5-33 Fields for Register: TXD_DRIVE_EDGE

Bits Name
Memory
Access Description

31:8 RSVD_TXD_DRIVE_EDGE R DRIVE_EDGE Reserved bits - Read Only
Value After Reset: 0x0
Exists: Always

7:0 TDE R/W TXD Drive edge - value of which decides the driving edge of
tramit data. The maximum value of this regster is =
(BAUDR/2) -1.
Value After Reset: 0x0
Exists: Always

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 179SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Register Descriptions

5.1.29 RSVD

■ Name: RSVD - Reserved address location

■ Description: RSVD - Reserved address location.

■ Size: 32 bits

■ Offset: 0xfc

■ Exists: Always

31
:0

R
S

V
D

Table 5-34 Fields for Register: RSVD

Bits Name
Memory
Access Description

31:0 RSVD R RSVD 31to0 Reserved address location
Value After Reset: 0x0
Exists: Always
Volatile: true

https://solvnet.synopsys.com
www.designware.com

180 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Register Descriptions DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 181

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

6
Programming the DW_apb_ssi

This chapter describes the programmable features of the DW_apb_ssi.

6.1 Programming Considerations
You should program the following features during the configuration setup:

■ APB data bus width

■ Type of device configuration; that is, serial master or serial slave

■ Depth of receive and transmit FIFO buffers

■ Peripheral ID code

■ Whether to include DMA handshaking interface signals

■ Whether the interrupt level is active high or active low

■ Whether interrupts are individual or combined

■ Whether to generate a clock enable input for the ssi_clk

■ Whether or not pclk and ssi_clk are synchronous

■ Whether to hardcode the frame format, and what type of frame format:

❑ Motorola SPI – requires setting the serial clock polarity and phase

❑ Texas Instruments Synchronous Serial Protocol

❑ National Semiconductor Microwire

https://solvnet.synopsys.com
www.designware.com

182 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_ssi DesignWare DW_apb_ssi Databook

Figure 6-1 shows a typical software flow for starting a DW_apb_ssi master SPI/SSP serial transfer. The
diagram also shows the hardware flow inside the serial-master component.

Figure 6-1 DW_apb_ssi Master SPI/SSP Transfer Flow

For more detailed information on the DW_apb_ssi master SPI/SSP serial transfer flow, see “Master SPI and
SSP Serial Transfers” on page 38.

IDLE

Disable

DW_apb_ssi

Write data to

Tx FIFO

Configure Master by
writing CTRLR0. CTRLR1,

BAUDR, TXFTLR,

Transfer in

progress

Interrupt?

BUSY?

Read Rx

FIFO

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent, then
write data into transmit

FIFO.
If the receive FIFO is

requesting, then read data
from receive FIFO.

Yes

No

Yes

No
TMOD = 01

You may fill FIFO here:
Transfer begins when

first data word is
present in the transmit

FIFO and a slave is
enabled.

Software Flow

IDLE

Pop data from Tx
FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

frame
transferred?

Transmit All frames
FIFO empty? transferred?

END

No

Yes Yes

No

TMOD = 01

TMOD = 10
TMOD = 00
TMOD = 01

RXFTLR, IMR, SER,
SPI_CTRLR0 (if Dual/Quad SPI)

Enable

DW_apb_ssi

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 183SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Programming the DW_apb_ssi

Figure 6-2 shows a typical software flow for starting a DW_apb_ssi master Microwire serial transfer. The
diagram also shows the hardware flow inside the serial-master component.

Figure 6-2 DW_apb_ssi Master Microwire Transfer Flow

For more detailed information on the DW_apb_ssi master Microwire serial transfer flow, see “Master
Microwire Serial Transfers” on page 41.

IDLE

Disable

DW_apb_ssi

Write control &

data to Tx FIFO

Configure Master
by writing CTRLR0.
CTRLR1, BAUDR,

Transfer in

progress

BUSY?

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent,
then write data into

transmit FIFO.
If the receive FIFO is
requesting, then read

data from receive FIFO.

Yes

No

Yes

No

MWCR[1]=1

If master receives data,
user need only write

control frames into the
Tx FIFO.

Transfer begins when
first control word is

present in the Transmit
FIFO and a slave is

enabled.

Software Flow

IDLE

Pop control frame from
Tx FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

control frame
transmitted?

Transmit All frames
FIFO empty? transferred?

END

Yes

Yes

Yes

No

TXFTLR, RXFTLR,
MWCR, IMR, SER

Enable

DW_apb_ssi

Pop data frame from
Tx FIFO into shifter

Receive Bit

All bits in
data frame
received?

Transmit Bit

All bits in
data frame

transmitted?

No

Yes

No No

MWCR[0]=0

MWCR[1]=0MWCR[1]=1

MWCR[0]=1

Interrupt?

Read Rx

FIFO

https://solvnet.synopsys.com
www.designware.com

184 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Programming the DW_apb_ssi DesignWare DW_apb_ssi Databook

Figure 6-3 shows a typical software flow for a DW_apb_ssi slave SPI or SSP serial transfer. The diagram also
shows the hardware flow inside the serial-slave component.

Figure 6-3 DW_apb_ssi Slave SPI/SSP Transfer Flow

For more detailed information on the DW_apb_ssi slave SPI or SSP serial transfer flow, see “Slave SPI and
SSP Serial Transfers” on page 44.

IDLE

Configure Slave
by writing CTRLR0.
CTRLR1, TXFTLR,

RXFTLR, MWCR, IMR

Transfer in
progress

Interrupt?

BUSY

Read Rx

FIFO

Interrupt Service
Routine

If the transmit FIFO is
requesting and all data

have not been sent, then
write data into transmit

FIFO.
If the receive FIFO is
requesting, then read

data from receive FIFO.

Yes

No

Yes

No

Software Flow

IDLE

Pop data from Tx
FIFO into shifter

All bits in

Load Rx FIFO

No

Yes

DW_apb_ssi

Transfer Bit

frame
transferred?

slave still
selected?

END

Yes Yes

TMOD = 01

TMOD = 10TMOD = 00
TMOD = 01

No

Wait for master
to select slave

Write data to
Tx FIFO

Enable
DW_apb_ssi

Disable
DW_apb_ssi

TMOD=01

TMOD=10
TMOD = 10

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 185

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

7
Verification

This chapter provides an overview of the testbench available for DW_apb_ssi verification. Once you have
configured DW_apb_ssi in either coreAssembler or coreConsultant and set up the verification environment,
you can run simulations automatically.

7.1 Overview of Vera Tests
The DW_apb_ssi verification testbench performs the set of tests in this section, which have been written to
exhaustively verify the functionality and have also achieved maximum RTL code coverage. All tests use the
APB Interface to dynamically program memory-mapped registers during tests.

7.1.1 APB Interface

This suite of tests is run to verify that the APB interface functions correctly by checking the following:

■ All address locations are written to with valid data

■ Configured MacroCell is AMBA-compliant

■ Read/write coherent

■ Reset value of all registers

■ Functionality of all registers

NoteNoteNoteNote Synopsys does not currently have a VMT-based VIP model for the SSI interface; thus Synopsys
does not support full-system verification of the SSI interface at this time.
The DW_apb_ssi DesignWare IP does ship with a simple testbench, where the SSI interface is
driven by Vera-based Bus Functional Models (BFMs) created solely for use in this testbench.
The models are included in the testbench in compiled Vera format (.vro); thus the BFM
implementation is not visible to the customer, and the customer cannot use these BFMs in their
own verification environment.

Attention
You should ensure that you have the supported version of the VIP components for this
release; otherwise, you may experience some tool compatibility problems. For more
information about supported tools in this release, see the DesignWare Synthesizable
Components for AMBA 2/AMBA 3 AXI Installation Guide.

https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://www.synopsys.com/dw/doc.php/doc/amba/latest/dw_amba_install.pdf
https://solvnet.synopsys.com
www.designware.com

186 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Verification DesignWare DW_apb_ssi Databook

7.1.2 DW_apb_ssi as Master

This suite of tests is run only when the DW_apb_ssi is configured as a master, during which time all
transfers are initiated by the DW_apb_ssi. When a master, the DW_apb_ssi must generate the clock
sclk_out.

7.1.3 DW_apb_ssi as Slave

This suite of tests is run only when the DW_apb_ssi is configured as a slave. Similar to the tests developed
for the master, the driving force is the serial-master Bus Functional Model (BFM). The DW_apb_ssi should
be tested for all frame formats, for all transfer modes, for all length of data frames, for all combinations of
clock polarity, and clock phase. The serial-master BFM initiates all the serial transfers.

7.1.4 DW_apb_ssi with DMA Interface

This suite of tests is only run when the DW_apb_ssi is configured with a handshaking interface. DMA is
implemented for both Transmit and Receive. These test verify the following:

■ SSI_HAS_DMA

■ After reset that all DMA control registers read zero.

■ It is possible to set the Transmit/Receive DMA enable bit through an APB write. Confirm it is
possible to clear these bits through an APB write.17

■ Once the transmit enable bit is set, a DMA transmit transfer request is generated provided the
number of entries in the FIFO is less than or equal to the DMA Data Level. The DMAing BFM is
configured initially not to respond to requests. APB transfers can fill the FIFO and confirm that the
request line is removed as the level in the FIFO fills. Confirm that when the DMAing BFM is
configured to respond that it fills the FIFO with sufficient data to remove the request.

■ The dma_tx_req signal is active when the number of entries in the transmit FIFO is equal to or below
the DMA Data Level. And remains active.

■ The dma_tx_single signal is asserted when there is at least one empty location in the transmit FIFO.
Confirm that it is cleared when the transmit FIFO is full.

■ The dma_tx_ack signal causes a pulse on dma_tx_req so that the DMAing BFM can respond to
requests for subsequent DMA transfers. The BFM only responds to rising edges on the request line.

■ The dma_tx_finish signal clears the transmit enable bit. Confirm that the dma_tx_req and
dma_tx_single lines are cleared. Confirm that dma_tx_finish stays active until dma_tx_req is sampled
low.18

NoteNoteNoteNote DW_apb_ssi does not start any operation when SSI_EN is held low. This control bit is verified
separately. Regardless of programmed values of the registers, there is no activity on the
component interface or within DW_apb_ssi once bit 0 of SSI Enable Register (SSIENR) is 0.
Within the HDL code, there are a number of checkers that insert error information into the log
file when the simulation is performed on an invalid configuration.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 187SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Verification

■ All data words are transmitted through DMA and that there is never any data left within the
DMAing BFM, one should be able to configure the BFM to read in bursts or in singles. This should be
confirmed for a range of threshold values.

■ The same operation exists for receive FIFOs.

Once a dma_[r|t]x_finish is received, the corresponding enable bit is cleared. Confirm that there are no
subsequent requests for DMA once the enable is removed.

7.1.5 Interrupts

These tests verify the following:

■ The Transmit FIFO Empty interrupt is not active when the DW_apb_ssi is returned from reset.

■ The Receive FIFO Full interrupt is not active when the DW_apb_ssi is returned from reset.

■ The Transmit FIFO Overflow interrupt is not active when the DW_apb_ssi is returned from reset.

■ The Receive FIFO Overflow interrupt is not active when the DW_apb_ssi is returned from reset.

■ The Receive FIFO Underflow interrupt is not active when the DW_apb_ssi is returned from reset.

■ The MultiMaster Contention interrupt is not active when the DW_apb_ssi is returned from reset.

https://solvnet.synopsys.com
www.designware.com

188 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Verification DesignWare DW_apb_ssi Databook

7.2 Overview of DW_apb_ssi Testbench
As illustrated in Figure 7-1, the DW_apb_ssi testbench is a Verilog testbench that includes an instantiation
of the design under test (DUT), AHB and APB Bridge bus models, and a Vera shell.

Figure 7-1 DW_apb_ssi Testbench

The Vera shell consists of a number of serial-slave BFMs, a master slave BFM, and a DMA BFM to simulate
and stimulate traffic to and from the DW_apb_ssi.

The test_DW_apb_ssi.v file shows the instantiation of the top-level MacroCell in a testbench and resides in
the workspace/src directory. The testbench checks your configuration selected in the Specify Configuration
task of coreConsultant. The testbench also determines if the component is AMBA-compliant and includes a
self-checking mechanism. When a coreKit has been unpacked and configured, the verification environment
is stored in workspace/sim. Files in workspace/sim/test_ssi form the actual testbench for DW_apb_ssi.

AHB Master
BFM

DW_ahbAHB Monitor

DW_apb

DUT
DW_apb_ssi.v
(APB Slave 1)

VERA Tests
(test stimuli and results)

Interrupts

Handshaking

(AHB Slave1)

test_DW_apb_ssi.v

AHB Slave2
BFM

Clock
Generator

APB Slave2
BFM

APB Monitor

Serial Slave
BFM

Serial Slave
BFM

Serial Slave
BFM

DMA
BFM= VERA shell

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 189

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

8
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations for the slave interface of APB peripherals.

8.1 Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

■ The size of the APB peripheral should always be set equal to the size of the APB data bus, if possible.

■ The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

■ The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

■ All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB bus
size.

■ The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

■ The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an OKAY
response to the AHB.

■ For all bus widths:

❑ In the case of a read transaction, registers less than the full bus width returns zeros in the unused
upper bits.

❑ Writing to bit locations larger than the register width does not have any effect. Only the pertinent
bits are written to the register.

■ The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits even
though they are not actually used in a 32- or 16-bit system.

8.1.1 Reading From Unused Locations

Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

https://solvnet.synopsys.com
www.designware.com

190 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

The following sections show the relationship between the register map and the read/write operations for
the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 8-1 Read/Write Locations for Different APB Bus Data Widths

8.1.2 32-bit Bus System

For 32-bit bus systems, all programming registers can be read or written with one operation, as illustrated in
the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case. But
these bits still exist in the configured code for usability purposes.

NoteNoteNoteNote If you write to an address location not on a 32-bit boundary, the bottom bits are ignored/not
used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 191SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

8.1.3 16-bit Bus System

For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit locations larger than
the register width causes nothing to happen, i.e. only the pertinent bits are written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower two bytes (half-word) and the
second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case. But
these bits still exist in the configured code for connectivity purposes.

8.1.4 8-bit Bus System

For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read transaction,
registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations larger than the
register width causes nothing to happen, that is, only the pertinent bits are written to the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to read
or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

https://solvnet.synopsys.com
www.designware.com

192 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

8.2 Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The APB
frame lasts for two cycles when psel is high.

Figure 8-2 APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high. The
second phase is preferred and is used in all APB slave components. The timing diagram is shown with the
write occurring after the second phase. Whenever the address on paddr matches a corresponding address
from the memory map and provided psel, pwrite, and penable are high, then the corresponding register
write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the APB
has completed. A write to the APB can be followed by a read transaction from another AHB peripheral (not
the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would be
generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 193SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

8.3 Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the DW_apb_ictl)
is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 8-3 APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is high,
pwrite and penable are low—then the corresponding read enable is generated. The read data is registered
within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but this
does not form part of the APB interface. The read happens in the first APB cycle and is passed straight back
to the AHB master in the same cycles as it passes through the bridge. By returning the data immediately to
the AHB bus, the bridge can release control of the AHB data bus faster. This is important for systems where
the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned from
the slave

8.4 Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then use
the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

NoteNoteNoteNote If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

https://solvnet.synopsys.com
www.designware.com

194 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

8.5 Coherency
Coherency is where bits within a register are logically connected. For instance, part of a register is read at
time 1 and another part is read at time 2. Being coherent means that the part read at time 2 is at the same
value it was when the register was read at time 1. The unread part is stored into a shadow register and this
is read at time 2. When there is no coherency, no shadow registers are involved.

A bus master may need to be able to read the contents of a register, regardless of the data bus width, and be
guaranteed of the coherency of the value read. A bus master may need to be able to write a register
coherently regardless of the data bus width and use that register only when it has been fully programmed.
This may need to be the case regardless of the relationship between the clocks.

Coherency enables a value to be read that is an accurate reflection of the state of the counter, independent of
the data bus width, the counter width, and even the relationship between the clocks. Additionally, a value
written in one domain is transferred to another domain in a seamless and coherent fashion.

Throughout this appendix the following terms are used:

■ Writing. A bus master programs a configuration register. An example is programming the load value
of a counter into a register.

■ Transferring. The programmed register is in a different clock domain to where it is used, therefore, it
needs to be transferred to the other clock domain.

■ Loading. Once the programmed register is transferred into the correct clock domain, it needs to be
loaded or used to perform its function. For example, once the load value is transferred into the
counter domain, it gets loaded into the counter.

8.5.1 Writing Coherently

Writing coherently means that all the bits of a register can be written at the same time. A peripheral may
have programmable registers that are wider than the width of the connected APB data bus, which prevents
all the bits being programmed at the same time unless additional coherency circuitry is provided.

The programmable register could be the load value for a counter that may exist in a different clock domain.
Not only does the value to be programmed need to be coherent, it also needs to be transferred to a different
clock domain and then loaded into the counter. Depending on the function of the programmable register, a
qualifier may need to be generated with the data so that it knows when the new value is currently
transferred and when it should be loaded into the counter.

Depending on the system and on the register being programmed, there may be no need for any special
coherency circuitry. One example that requires coherency circuitry is a 32-bit timer within an 8-bit APB
system. The value is entirely programmed only after four 8-bit wide write transfers. It is safe to transfer or
use the register when the last byte is currently written. An example where no coherency is required is a
16-bit wide timer within a 16-bit APB system. The value is entirely programmed after a single 16-bit wide
write transfer.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 195SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

Coherency circuitry enables the value to be loaded into the counter only when fully programmed and
crossed over clock domains if the peripheral clock is not synchronous to the processor clock. While the load
register is being programmed, the counter has access to the previous load value in case it needs to reload the
counter.

Coherency circuitry is only added in cores where it is needed. The coherency circuitry incorporates an
upper byte method that requires users to program the load register in LSB to MSB order when the
peripheral width is smaller than the register width. When the upper byte is programmed, the value can be
transferred and loaded into the load register. When the lower bytes are being programmed, they need to be
stored in shadow registers so that the previous load register is available to the counter if it needs to reload.
When the upper byte is programmed, the contents of the shadow registers and the upper byte are loaded
into the load register.

The upper byte is the top byte of a register. A register can be transferred and loaded into the counter only
when it has been fully programmed. A new value is available to the counter once this upper byte is written
into the register. The following table shows the relationship between the register width and the peripheral
bus width for the generation of the correct upper byte. The numbers in the table represent bytes, Byte 0 is
the LSB and Byte 3 is the MSB. NCR means that no coherency circuitry is required, as the entire register is
written with one access.

There are three relationship cases to be considered for the processor and peripheral clocks:

■ Identical

■ Synchronous (phase coherent but of an integer fraction)

■ Asynchronous

Table 8-1 Upper Byte Generation

Upper Byte
Bus Width

Load Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 1 NCR NCR

17 - 24 2 2 NCR

25 - 32 3 2 (or 3) NCR

https://solvnet.synopsys.com
www.designware.com

196 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

8.5.1.1 Identical Clocks

The following figure illustrates an RTL diagram for the circuitry required to implement the coherent write
transaction when the APB bus clock and peripheral clocks are identical.

Figure 8-4 Coherent Loading – Identical Synchronous Clocks

The following figure shows a 32-bit register that is written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal lasts
for one cycle and is used to load the counter with CntLoadValue.

Figure 8-5 Coherent Loading – Identical Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

pclk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

LoadValue[31:0]

UpperByteWen

LoadCnt

Counter[31:0]

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 197SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

Each of the bytes that make up the load register are stored into shadow registers until the final byte is
written. The shadow register is up to three bytes wide. The contents of the shadow registers and the final
byte are transferred into the CntLoadValue register when the final byte is written. The counter uses this
register to load/initialize itself. If the counter is operating in a periodic mode, it reloads from this register
each time the count expires.

By using the shadow registers, the CntLoadValue is kept stable until it can be changed in one cycle. This
allows the counter to be loaded in one access and the state of the counter is not affected by the latency in
programming it. When there is a new value to be loaded into the counter initially, this is signaled by
LoadCnt = 1. After the upper byte is written, the LoadCnt goes to zero.

8.5.1.2 Synchronous Clocks

When the clocks are synchronous but do not have identical periods, the circuitry needs to be extended so
that the LoadCnt signal is kept high until a rising edge of the counter clock occurs. This extension is
necessary so that the value can be loaded, using LoadCnt, into the counter on the first counter clock edge. At
the rising edge of the counter clock if LoadCnt is high, then a register clocked with the counter clock toggles,
otherwise it keeps its current value. A circuit detecting the toggling is used to clear the original LoadCnt by
looking for edge changes. The value is loaded into the counter when a toggle has been detected. Once it is
loaded, the counter should be free to increment or decrement by normal rules.

The following figure shows an RTL diagram for the circuitry required to implement the coherent write
when the bus and peripheral clocks are synchronous.

Figure 8-6 Coherent Loading – Synchronous Clocks

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0] Counter

[31:0]

LoadCnt

Shadow

OR

AND
ToggleToggle

1

1

Shaded Registers are all
connected to the Bus clock.
Others are connected to the
Peripheral clock.

https://solvnet.synopsys.com
www.designware.com

198 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

The following figure shows a 32-bit register being written over an 8-bit data bus, as well as the shadow
registers being loaded and then loaded into the counter when fully programmed. The LoadCnt signal is
extended until a change in the toggle is detected and is used to load the counter.

Figure 8-7 Coherent Loading – Synchronous Clocks

0A 0B 0C 0D

0A

0B

0C

0D0C0B0A

0D0C0B0A

A0 A1 A2 A3

counter_clk

paddr

penable

pwdata[7:0]

Shadow[7:0]

Shadow[15:8]

Shadow[23:16]

CntLoadValue[31:0]

LoadCnt

toggle_edge_detect

Counter[31:0]

toggle

pclk

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 199SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

8.5.1.3 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three-times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock. The following figure shows an RTL diagram for the circuitry
required to implement the coherent write when the bus and peripheral clocks are asynchronous.

Figure 8-8 Coherent Loading – Asynchronous Clocks

When the clocks are asynchronous, you need to transfer the contents of the register from one clock domain
to another. It is not desirable to transfer the entire register through meta-stability registers, as coherency is
not guaranteed with this method. The circuitry needed requires the processor clock to be used to re-time the
peripheral clock. Upon a rising edge of the re-timed clock, the new value signal, NewValue, is transferred
into a safe new value signal, SafeNewValue, which happens after the edge of the peripheral clock has
occurred.

Every time there is a rising edge of the peripheral clock detected, the CntLoadValue is transferred into a
SafeCntLoadValue. This value is used to transfer the load value across the clock domains. The
SafeCntLoadValue only changes a number of bus clock cycles after the peripheral clock edge changes. A

EN

8

EN

8

EN

8

pwdata[7:0]

ByteWen[0]

pwdata[15:8]

ByteWen[1]

pwdata[23:16]

ByteWen[2]

UpperByteWen EN

32

LD

32
Shadow [7:0]

Shadow [15:8]

Shadow [23:16]

CntLoadValue
[31:0]

Counter
[31:0]

Shadow

Toggle 1

1

Shaded and edge detect registers are all
connected to the Bus clock. Others are
connected to the Peripheral clock.

(or ByteWen[3])

ClrNewValue
Reset

EN

32

NewValue

red_counter_clk

SafeCountLoadValue

&

Reset

EN

ClrNewValue

red_counter_clk

Edge
Detect

ClrNewValue

pclk

Rising

Detect
counter_clk

pclk

Edge red_counter_clk

SafeNewValue

https://solvnet.synopsys.com
www.designware.com

200 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

counter running on the peripheral clock is able to use this value safely. It could be up to two peripheral
clock periods before the value is loaded into the counter. Along with this loaded value, there also is a single
bit transferred that is used to qualify the loading of the value into the counter.

The timing diagram depicted in the following figure does not show the shadow registers being loaded. This
is identical to the loading for the other clock modes.

Figure 8-9 Coherent Loading – Asynchronous Clocks

The NewValue signal is extended until a change in the toggle is detected and is used to update the safe
value. The SafeNewValue is used to load the counter at the rising edge of the peripheral clock. Each time a
new value is written the toggle bit is flipped and the edge detection of the toggle is used to remove both the
NewValue and the SafeNewValue.

8.5.2 Reading Coherently

For writing to registers, an upper-byte concept is proposed for solving coherency issues. For read
transactions, a lower-byte concept is required. The following table provides the relationship between the
register width and the bus width for the generation of the correct lower byte.

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

Counter Register Width 8 16 32

1 - 8 NCR NCR NCR

9 - 16 0 NCR NCR

0D0C0B0A

0D0C0B0A

0D0C0B0A

A3

counter_clk

paddr

penable

pwdata[7:0]

NewValue

ntLoadValue[31:0]

red_counter_clk

ntLoadValue[31:0]

SafeNewValue

ClrNewValue

Counter[31:0]

toggle

pclk

0D

UpperByteWen

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 201SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

Depending on the bus width and the register width, there may be no need to save the upper bits because the
entire register is read in one access, in which case there is no problem with coherency. When the lower byte
is read, the remaining upper bytes within the counter register are transferred into a holding register. The
holding register is the source for the remaining upper bytes. Users must read LSB to MSB for this solution to
operate correctly. NCR means that no coherency circuitry is required, as the entire register is read with one
access.

There are two cases regarding the relationship between the processor and peripheral clocks to be considered
as follows:

■ Identical and/or synchronous

■ Asynchronous

8.5.2.1 Synchronous Clocks

When the clocks are identical and/or synchronous, the remaining unread bits (if any) need to be saved into
a holding register once a read is started. The first read byte must be the lower byte provided in the previous
table, which causes the other bits to be moved into the holding register, SafeCntVal, provided that the
register cannot be read in one access. The upper bytes of the register are read from the holding register
rather than the actual register so that the value read is coherent. This is illustrated in the following figure
and in the timing diagram after it.

Figure 8-10 Coherent Registering – Synchronous Clocks

17 - 24 0 0 NCR

25 - 32 0 0 NCR

Table 8-2 Lower Byte Generation

Lower Byte
Bus Width

CntVal[31:8]

CntVal[31:8]

EN

LowerByteRen

SafeCntVal

ReadCntVal[31:0]

ByteRen[3:0]

Counter
Block

Shaded registers are clocked
with the processor clock.

https://solvnet.synopsys.com
www.designware.com

202 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

Figure 8-11 Coherent Registering – Synchronous Clocks

8.5.2.2 Asynchronous Clocks

When the clocks are asynchronous, the processor clock needs to be three times the speed of the peripheral
clock for the re-timing to operate correctly. The high pulse time of the peripheral clock needs to be greater
than the period of the processor clock.

To safely transfer a counter value from the counter clock domain to the bus clock domain, the counter clock
signal should be transferred to the bus clock domain. When the rising edge detect of this re-timed counter
clock signal is detected, it is safe to use the counter value to update a shadow register that holds the current
value of the counter.

While reading the counter contents it may take multiple APB transfers to read the value.

Once a read transaction has started, the value of the upper register bits need to be stored into a shadow
register so that they can be read with subsequent read accesses. Storing these upper bits preserves the
coherency of the value that is being read. When the processor reads the current value it actually reads the
contents of the shadow register instead of the actual counter value. The holding register is read when the
bus width is narrower than the counter width. When the LSB is read, the value comes from the shadow
register; when the remaining bytes are read they come from the holding register. If the data bus width is
wide enough to read the counter in one access, then the holding registers do not exist.

The counter clock is registered and successively pipelined to sense a rising edge on the counter clock.
Having detected the rising edge, the value from the counter is known to be stable and can be transferred
into the shadow register. The coherency of the counter value is maintained before it is transferred, because
the value is stable.

NoteNoteNoteNote You must read LSB to MSB when the bus width is narrower than the counter width.

A0 A1 A2 A3

00010203 0A0B0C0D 0E0F0G0H

clk1

CntVal[31:0]

paddr

penable

prdata[7:0]

SafeCntVal[31:8]

LowerByteRen

pclk

A0 A1 A2

03 02 01 00 0H 0G

000102 0E0F0G

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 203SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Integration Considerations

The following figure illustrates the synchronization of the counter clock and the update of the shadow
register.

Figure 8-12 Coherency and Shadow Registering – Asynchronous Clocks

CntVal

EN

LowerByteRen

SafeCntVal

ReadCntVal

Sync and shaded registers are
clocked with the processor clock.

ShdwCntVal

EN

Sync & Rising
Edge Detect

Safe To Update

https://solvnet.synopsys.com
www.designware.com

204 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Integration Considerations DesignWare DW_apb_ssi Databook

8.6 Performance
This section discusses performance and the hardware configuration parameters that affect the performance
of the DW_apb_ssi.

8.6.1 Power Consumption, Frequency, and Area Results

Table 8-3 provides information about the synthesis results (power consumption, frequency, and area) of the
DW_apb_ssi using the industry standard 28nm technology library and how it affects performance.

Table 8-3 Power Consumption, Frequency, and Area Results for DW_apb_ssi Using Industry Standard 28nm
Technology Library

Configuration
Operating
Frequency Gate Count

Static Power

Consumption

Dynamic Power

Consumption

Default Configuration pclk: 200 MHz
ssi_clk: 200 MHz

5763 gates 0.0933uW 18.1uW

Minimum Configuration:
SSI_IS_MASTER=0
SSI_HAS_DMA=0
SSI_HC_FRF=1
SSI_TX_FIFO_DEPTH=2
SSI_RX_FIFO_DEPTH=2

pclk: 200 MHz
ssi_clk: 200 MHz

2301 gates 0.0379uW 7.50uW

Maximum 1 Configuration:
APB_DATA_WIDTH=8
SSI_IS_MASTER=1
SSI_HAS_DMA=1
SSI_HC_FRF=0
SSI_TX_FIFO_DEPTH=256
SSI_RX_FIFO_DEPTH=256
SSI_HAS_RX_SAMPLE_DELAY=1
SSI_RX_DLY_SR_DEPTH=255
SSI_MAX_XFER_SIZE=32

pclk: 200 MHz
ssi_clk: 200 MHz

156360 gates 2.66uW 558uW

Maximum 2 Configuration:
APB_DATA_WIDTH=32
SSI_HAS_DMA=1
SSI_HAS_RX_SAMPLE_DELAY=1
SSI_HC_FRF=0
SSI_IS_MASTER=1
SSI_MAX_XFER_SIZE=32
SSI_RX_DLY_SR_DEPTH=31
SSI_RX_FIFO_DEPTH=32
SSI_SPI_MODE=2
SSI_TX_FIFO_DEPTH=32

pclk: 200 MHz
ssi_clk: 200 MHz

24757 gates 0.415uW 83.2uW

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 205

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

A
Synchronizer Methods

This appendix describes the synchronizer methods (blocks of synchronizer functionality) that are used in
the DW_apb_ssi to cross clock boundaries.

This appendix contains the following sections:

■ “Synchronizers Used in DW_apb_ssi” on page 206

■ “Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ssi)” on page 207

■ “Synchronizer 2: Synchronous (Dual-clock) FIFO Controller With Static Flags” on page 208

NoteNoteNoteNote The DesignWare Building Blocks (DWBB) contains several synchronizer components with
functionality similar to methods documented in this appendix. For more information about the
DWBB synchronizer components go to:
https://www.synopsys.com/dw/buildingblock.php

https://www.synopsys.com/dw/buildingblock.php
https://solvnet.synopsys.com
www.designware.com

206 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Synchronizer Methods DesignWare DW_apb_ssi Databook

A.1 Synchronizers Used in DW_apb_ssi
Each of the synchronizers and synchronizer sub-modules are comprised of verified DesignWare Basic Core
(BCM) RTL designs. The BCM synchronizer designs are identified by the synchronizer type. The
corresponding RTL files comprising the BCM synchronizers used in the DW_apb_ssi are listed and cross
referenced to the synchronizer type in Table A-1. Note that certain BCM modules are contained in other
BCM modules, as they are used in a building block fashion.

Table A-1 Synchronizers used in DW_apb_ssi

Synchronizer module
file Sub module file Synchronizer Type and Number

DW_apb_ssi_bcm21.v Synchronizer 1: Simple Multiple Register Synchronizer

DW_apb_ssi_bcm07.v DW_apb_ssi_bcm05.v
DW_apb_ssi_bcm21.v

Synchronizer 2: Synchronous dual clock FIFO Controller with
Static Flags

NoteNoteNoteNote The BCM21 is a basic multiple register based synchronizer module used in the design. It can be
replaced with equivalent technology specific synchronizer cell.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 207SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Synchronizer Methods

A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ssi)
This is a single clock data bus synchronizer for synchronizing data that crosses asynchronous clock
boundaries. The synchronization scheme depends on core configuration. If pclk and ssi_clk are
asynchronous (SSI_SYNC_CLK =0) or if DW_apb_ssi is configured to be slave (SSI_IS_MASTER=0) then
DW_apb_ssi_bcm21 is instantiated inside the core for synchronization. This uses two stage synchronization
process (Figure A-1) both using positive edge of clock.

Figure A-1 Block Diagram of Synchronizer 1 With Two Stage Synchronization (Both Positive Edges)

When DW_apb_ssi is working in slave mode and advanced slave architecture is selected
(SSI_ENH_CLK_RATIO=1), then DW_apb_ssi uses faster synchronization scheme which uses one negative
edge and one positive edge synchronization.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

208 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Synchronizer Methods DesignWare DW_apb_ssi Databook

Figure A-2 Block Diagram of Synchronizer 1 With Two Stage Synchronization (One Negative Edge and One
Positive Edge)

A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller With Static
Flags

DW_apb_ssi_bcm07 is a dual independent clock FIFO RAM controller. It is designed to interface with a
dual-port synchronous RAM. The FIFO controller provides address generation, write-enable logic, flag
logic, and operational error detection logic. The DW_apb_ssi_bcm07 component is used as the FIFO
controller when the SSI_SYNC_CLK parameter is set to 0; otherwise, DW_apb_ssi uses DW_apb_ssi_bcm06
component which is synchronous with the single clock FIFO controller.

Figure A-3 shows the block diagram of Synchronizer 2.

D Q data_ddata_s
width

D Q
width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES not defined

Missampling Disabled

Missampling Enabled

Missampling
Delay Block

(per-bit basis)
D Q data_ddata_s

width
D Q

width

test

D Q

width

width

Configured as : f_sync_type = 2, tst_mode = 1
‘DW_MODEL_MISSAMPLES is defined

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 209SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Synchronizer Methods

Figure A-3 Synchronizer 2 Block Diagram

push_req_n

clk_push

rst_n

pop_req_n

clk_pop

Push Interface

sync

sync

Gray addr

Gray addr

wr_addr

rd_addr

push_error
Push Status Flags

pop_error

Pop Status Flags

wr_addr

rd_addr

we_n

Pop Interface

https://solvnet.synopsys.com
www.designware.com

210 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Synchronizer Methods DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 211

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

B
Application Notes

This appendix contains useful “Application Note” information that may be helpful to you in using the
DW_apb_ssi component.

B.1 Interfacing DW_apb_ssi and Atmel SPI Devices
Synopsys and Atmel have taken different interpretations of the Motorola SPI serial protocol from the
specification. The DW_apb_ssi component is able to communicate with Atmel SPI peripherals but must be
programmed slightly differently than with other vendor devices.

The differences between the two devices concern the serial clock phase (SCPH) and serial clock polarity
(SCPOL) configuration parameters for the SPI protocol.

B.1.1 Synopsys SPI Operation

When the default serial clock phase is set to logic 0 (SCPH = 0) and the default serial clock polarity is set to
logic 0 (SCPOL = 0), the DW_apb_ssi master device toggles the slave select output (ss_0_n) before beginning
each new data frame of a continuous serial transfer. This occurs because data transmission starts on the
falling edge of the slave select signal. Data is propagated on the negative edge of the serial clock and
captured on the positive edge of the serial clock. The inactive state of the serial clock in this mode is logic ‘0’.

Figure B-1 shows a continuous transfer from a DW_apb_ssi master with the SCPH and SCPOL
configuration parameters both set to logic 0.

Figure B-1 DW_apb_ssi SPI: Continuous Transfer where SCPH = 0 and SCPOL = 0

MSB MSBLSB LSB

sclk_out/in 0

txd

ss_0_n/ss_in_n

ssi_oe_n

MSB MSBLSB LSBrxd

https://solvnet.synopsys.com
www.designware.com

212 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Application Notes DesignWare DW_apb_ssi Databook

When both the serial clock phase (SCPH) and the serial clock polarity (SCPOL) configuration parameters are
set to logic 1, the DW_apb_ssi master device transmits/captures the most significant bit (MSB) of the new
data frame directly after the least significant bit (LSB) from the previous data frame. The slave select signal
remains active for the duration of the serial transfer. This occurs because data transmission does not begin
until the first serial clock edge after the slave select signal is active. Data is propagated on the falling edge of
the serial clock and captured on the rising edge of the serial clock. The inactive state of the serial clock in this
mode is logic 1.

Figure B-2 shows a continuous transfer from a DW_apb_ssi master with SCPH = 1 and SCPOL = 1.

Figure B-2 DW_apb_ssi SPI: Continuous Transfer where SCPH=1 and SCPOL=1

B.1.2 Atmel SPI Operation

When the Atmel peripheral advertises both the serial clock phase (SCPH) and the serial clock polarity
(SCPOL) configuration parameters set to logic 0, it behaves almost exactly like the DW_apb_ssi component
when programmed with SCPH = 1 and SCPOL = 1.

The Atmel device transmits/captures the MSB of the new data frame directly after the LSB from the
previous data frame. The slave select signal remains active for the duration of the serial transfer. Data is
propagated on the falling edge of the serial clock and captured on the rising edge of the serial clock. This
behavior matches exactly the behavior of the DW_apb_ssi device when programmed with SCPH and
SCPOL set to logic 1.

 4 - 16 bits

MSB LSB

MSB LSB

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

ssi_oe_n

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 213SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Application Notes

A timing diagram from an Atmel data sheet (AT25F4096), shown in Figure B-3, illustrates a continuous SPI
transfer to one of their SPI memory devices with both SCPH and SCPOL set to logic 0.

Figure B-3 Atmel SPI: Continuous Transfer with SCPH=0 and SCPOL=0

The only visible difference between the Atmel timing diagram and the DW_apb_ssi timing diagram
(SCPH = 1, SCPOL = 1) is the inactive level of the serial clock.

B.1.3 Interoperability between DW_apb_ssi and Atmel Devices

In order for the DW_apb_ssi component to communicate with an Atmel peripheral, you must invert the
logic on the advertised SCPH and SCPOL parameters when programming the DW_apb_ssi component.

B.2 Interfacing DW_apb_ssi with Dual/Quad Capable Devices
DW_apb_ssi supports Dual/Quad mode of operation in SPI mode. The connection in Dual/Quad mode is
different for various devices. In order to comply with all the possible pin-out structure of devices,
DW_apb_ssi provides an spi_mode output signal from the device that informs the working mode of the
device.

Following are decoding of the SPI modes:

■ spi_mode - 00: Normal SPI mode

■ spi_mode - 01: Dual SPI mode

■ spi_mode - 10: Quad SPI mode

■ spi_mode - 11: Reserved for future use

This decoding helps you to perform I/O mapping for any available device.

B.2.1 I/O Connection for A Device That Supports Dual/Quad SPI

This section illustrates how any standard memory device can be connected to DW_apb_ssi using the
spi_mode signal. The device taken as an example has an I/O structure similar to the industry standard
memories, which support Dual/Quad SPI transfers.

Figure B-4 shows a pin diagram of a typical memory device.

https://solvnet.synopsys.com
www.designware.com

214 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Application Notes DesignWare DW_apb_ssi Databook

Figure B-4 Pin Diagram for a Memory Device

In the Standard mode of operation:

■ DI - Represents Master Output Slave Input (MOSI)

■ DO - Represents Master Input Slave Output (MISO)

In the Dual/Quad mode of operation, DI becomes IO0 and DO becomes IO1. As illustrated in Figure B-4,
these are bi-direction signals and they share the same pins as used in the Standard mode. Additionally, for
the Quad mode of operation IO2 and IO3 pins are also available.

Therefore, the DI (IO0) pin acts as data IN for Standard SPI mode and IO0 in Dual/Quad SPI mode. The DO
(IO1) pin acts as data OUT in Standard SPI mode and IO1 in Dual/Quad SPI operation.

As signals are shared across different modes of operation, a multiplex logic is required outside the design to
route the signal correctly in Standard and Dual/Quad modes.

Figure B-5 shows an example of how the multiplex logic can be implemented using the spi_mode signal for
routing the signals.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 215SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Application Notes

Figure B-5 Implementation of Multiplex Logic Using the spi_mode Signal

DW
_apb_ssi

txd[3]

ssi_oe_n[3]

txd[2]

ssi_oe_n[2]

txd[1]

ssi_oe_n[1]

txd[0]

ssi_oe_n[0]

Flash M
em

ory
IO3

ENB

ENB

ENB

IO2

IO1/DO

IO0/DI

IO
M

ux

spi_mode

0

>1

ENB

CSss_0_n

rxd[3]

rxd[2]

rxd[1]

rxd[0]

https://solvnet.synopsys.com
www.designware.com

216 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Application Notes DesignWare DW_apb_ssi Databook

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 217

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

C
Internal Parameter Descriptions

Provides a description of the internal parameters that might be indirectly referenced in expressions in the
Signals, Parameters, or Registers chapters. These parameters are not visible in the coreConsultant GUI and
most of them are derived automatically from visible parameters. You must not set any of these parameters
directly.

Some expressions might refer to TCL functions or procedures (sometimes identified as function_of) that
coreConsultant uses to make calculations. The exact formula used by these TCL functions is not provided in
this chapter. However, when you configure the core in coreConsultant, all TCL functions and parameters
are evaluated completely; and the resulting values are displayed where appropriate in the coreConsultant
GUI reports.

Table C-1 Internal Parameters

Parameter Name Equals To

APB_ADDR_WIDTH = (SSI_XIP_EN == 1 ? 32: 8)

RX_ABW {[function_of: SSI_RX_FIFO_DEPTH]}

SSI_CTRLR0_RST = (SSI_SPI_MODE ! = 0 ? (SSI_MAX_XFER_SIZE == 16
? SSI_CTRLR0_RST_18: SSI_CTRLR0_RST_19) :
(SSI_MAX_XFER_SIZE == 16 ? SSI_CTRLR0_RST_16:
SSI_CTRLR0_RST_21))

SSI_CTRLR0_RST_16 {SSI_SCPH0_SSTOGGLE_RST,{16{1'b0}} ,
SSI_DFLT_SCPOL, SSI_DFLT_SCPH, SSI_DFLT_FRF,
4'b0111 }

SSI_CTRLR0_RST_18 {
SSI_SCPH0_SSTOGGLE_RST,1'b0,SSI_DFLT_SPI_FR
F, 5'b00000 ,{8{1'b0}} , SSI_DFLT_SCPOL,
SSI_DFLT_SCPH, SSI_DFLT_FRF, 4'b0111 }

SSI_CTRLR0_RST_19 {SSI_SCPH0_SSTOGGLE_RST,1'b0,SSI_DFLT_SPI_FR
F, 5'b00111 ,{8{1'b0}} , SSI_DFLT_SCPOL,
SSI_DFLT_SCPH, SSI_DFLT_FRF, 4'b0000 }

SSI_CTRLR0_RST_21 { SSI_SCPH0_SSTOGGLE_RST,3'b000,5'b00111
,{8{1'b0}} , SSI_DFLT_SCPOL, SSI_DFLT_SCPH,
SSI_DFLT_FRF, 4'b0000 }

https://solvnet.synopsys.com
www.designware.com

218 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Internal Parameter Descriptions DesignWare DW_apb_ssi Databook

SSI_HAS_EXTD_SPI =(SSI_SPI_MODE == 0 ? 0 : 1)

SSI_SCPH0_SSTOGGLE_RST = (SSI_SCPH0_SSTOGGLE ==1 ? 1: 0)

SSI_SPI_MULTIIO =(SSI_SPI_MODE == 3 ? 8 : (SSI_SPI_MODE == 1 ? 2 :
(SSI_SPI_MODE == 2 ? 4 : 1)))

SSI_VERSION_ID 32'h3430322a

TX_ABW {[function_of: SSI_TX_FIFO_DEPTH]}

Table C-1 Internal Parameters (Continued)

Parameter Name Equals To

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 219

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

D
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and off-
chip external memory interfaces (Arm® Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by Arm®
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (Arm® Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug. A
BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes in a
word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands typically
return data to the testbench from the model.

https://solvnet.synopsys.com
www.designware.com

220 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Glossary DesignWare DW_apb_ssi Databook

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable block
that can be instantiated as a single entity (VHDL) or module (Verilog) in a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used in
the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for a big
piece of IIP. Anything that requires coreConsultant for configuration, as well as
anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in the
DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable cores
into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design views
and synthesis views you need to integrate the core into your design. Can also
synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format back
to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

DesignWare Synthesizable
Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant or
coreAssembler to quickly build DesignWare Synthesizable Component designs.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 221SolvNet
DesignWare.com

4.02a
July 2018

DesignWare DW_apb_ssi Databook Glossary

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is authorized
by a single DesignWare license. Products include SmartModels, VMT model
suites, DesignWare Memory Models, Building Block IP, and the DesignWare
Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code by
non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable HDL
and non-synthesizable “hard” IP in all of its forms (coreKit, component, core,
MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of a
core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the DesignWare
Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

https://solvnet.synopsys.com
www.designware.com

222 Synopsys, Inc. SolvNet
DesignWare.com

4.02a
July 2018

Glossary DesignWare DW_apb_ssi Databook

RTL Register Transfer Level. A higher level of abstraction that implies a certain gate-
level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as synthesizable
IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology through
synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component. The
files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in any
form, including a Design View.

workspace A network location that contains a personal copy of a component or subsystem.
After you configure the component or subsystem (using coreConsultant or
coreAssembler), the workspace contains the configured component/subsystem
and generated views needed for integration of the component/subsystem at the
top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing easier
interfacing. Usually requires an extra, sometimes automated, step to create the
wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

https://solvnet.synopsys.com
www.designware.com

Synopsys, Inc. 223

DesignWare DW_apb_ssi Databook

SolvNet
DesignWare.com

4.02a
July 2018

Index

A
active command queue

definition 219
activity

definition 219
AHB

definition 219
AMBA

definition 219
APB

definition 219
APB bridge

definition 219
APB Interface, and DW_apb_ssi 87
application design

definition 219
arbiter

definition 219
B
BFM

definition 219
big-endian

definition 219
Block diagram, of DW_apb_ssi 19
blocked command stream

definition 219
blocking command

definition 219
Buffers, transmit and receive FIFOs 29
bus bridge

definition 220
C
Coherency

about 194
read 200
write 194

command channel
definition 220

command stream
definition 220

component
definition 220

configuration
definition 220

configuration intent
definition 220

core
definition 220

core developer
definition 220

core integrator
definition 220

coreAssembler
definition 220

coreConsultant
definition 220

coreKit
definition 220

Customer Support 14
cycle command

definition 220
D
decoder

definition 220
design context

definition 220
design creation

definition 220
Design View

definition 220
DesignWare cores

definition 221

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_ssi Databook

224 Synopsys, Inc.SolvNet
DesignWare.com

4.02a
July 2018

DesignWare Library
definition 221

DesignWare Synthesizable Components
definition 220

DMA Controller
and DW_apb_ssi 76

dual role device
definition 221

DW_apb
slaves

read timing operation 193
write timing operation 192

DW_apb_ssi
block diagram of 19
functional description 23
functional description of 19
Master mode 33
programming of 181
testbench

overview of 188
overview of tests 185

E
EEPROM Read mode 33
endian

definition 221
Environment, licenses 22
F
Full-Functional Mode

definition 221
Functional description 19
Functional description, of DW_apb_ssi 23
G
GPIO

definition 221
GTECH

definition 221
H
hard IP

definition 221
HDL

definition 221
I
IIP

definition 221
implementation view

definition 221
instantiate

definition 221
interface

definition 221
Interfaces

APB 87
DMA Controller 76

Interrupts, transmit and receive FIFOs 31
IP

definition 221
L
Licenses 22
little-endian

definition 221
M
MacroCell

definition 221
master

definition 221
Master mode 33
Master transfer flow 43, 183
model

definition 221
monitor

definition 221
Motorola SPI, description of 47
N
National Semiconductor Microwire, description of 54
non-blocking command

definition 221
O
Operation modes

Master mode 33
P
peripheral

definition 221
Programming DW_apb_ssi

memory map 181
R
Read coherency

about 200
and asynchronous clocks 202
and synchronous clocks 201

https://solvnet.synopsys.com
www.designware.com

 DesignWare DW_apb_ssi Databook Index

Synopsys, Inc. 2254.02a
July 2018

SolvNet
DesignWare.com

Reading, from unused locations 189
Receive FIFO

buffers 29
interrupts 31

Receive only mode 32
RTL

definition 222
S
SDRAM

definition 222
SDRAM controller

definition 222
Serial protocols

about 23
Motorola SPI 47
National Semiconductor Microwire 54
Texas Instruments SSP 53

Simple double register synchronizer 207
Simulation

of DW_apb_ssi coreKit 188
slave

definition 222
Slave transfer flow 46, 184
SoC

definition 222
SoC Platform

AHB contained in 17
APB, contained in 17
defined 17

soft IP
definition 222

static controller
definition 222

subsystem
definition 222

Synchronizer
simple double register 207

synthesis intent
definition 222

synthesizable IP
definition 222

T
technology-independent

definition 222
test_DW_apb_ssi.v 188

Testsuite Regression Environment (TRE)
definition 222

Texas Instruments SSP, description of 53
Timing

read operation of DW_apb slave 193
write operation of DW_apb slave 192

Transfer modes
about 32
EEPROM read 33
Receive only 32
Transmit and receive 32
Transmit only 32

Transmit and receive mode 32
Transmit FIFO

buffers 29
interrupts 31

Transmit only mode 32
TRE

definition 222
V
Vera, overview of tests 185
Verification

and Vera tests 185
of DW_apb_ssi coreKit 188

VIP
definition 222

W
workspace

definition 222
wrap

definition 222
wrapper

definition 222
Write coherency

about 194
and asynchronous clocks 199
and identical clocks 196
and synchronous clocks 197

Z
zero-cycle command

definition 222

https://solvnet.synopsys.com
www.designware.com

Index DesignWare DW_apb_ssi Databook

226 Synopsys, Inc.SolvNet
DesignWare.com

4.02a
July 2018

https://solvnet.synopsys.com
www.designware.com

	SolvNet
	DesignWare
	Documentation Overview
	Release Notes
	User Guide
	Installation Guide
	Contents
	Revision History
	Preface
	Organization
	Related Documentation
	Web Resources
	Customer Support
	Product Code

	1 Product Overview
	1.1 DesignWare System Overview
	1.2 General Product Description
	1.2.1 DW_apb_ssi Block Diagram

	1.3 Features
	1.4 Standards Compliance
	1.5 Verification Environment Overview
	1.6 Licenses
	1.7 Where To Go From Here

	2 Functional Description
	2.1 DW_apb_ssi Overview
	2.1.1 Example of Target Slave Selection Using Software

	2.2 Clock Ratios
	2.2.1 SSI_ENH_CLK_RATIO = 0
	2.2.2 SSI_ENH_CLK_RATIO = 1
	2.2.3 Frequency Ratio Summary
	2.2.3.1 Design For Test

	2.3 Transmit and Receive FIFO Buffers
	2.4 32-Bit Frame Size Support
	2.5 SSI Interrupts
	2.6 Transfer Modes
	2.6.1 Transmit and Receive
	2.6.2 Transmit Only
	2.6.3 Receive Only
	2.6.4 EEPROM Read

	2.7 Operation Modes
	2.7.1 Serial Master Mode
	2.7.1.1 Master Contention Input
	2.7.1.2 RXD Sample Delay
	2.7.1.3 Data Transfers
	2.7.1.4 Master SPI and SSP Serial Transfers
	2.7.1.5 Master Microwire Serial Transfers

	2.7.2 Serial-Slave Mode
	2.7.2.1 Slave SPI and SSP Serial Transfers
	2.7.2.2 Slave Microwire Serial Transfers

	2.8 Partner Connection Interfaces
	2.8.1 Motorola Serial Peripheral Interface (SPI)
	2.8.2 Texas Instruments Synchronous Serial Protocol (SSP)
	2.8.3 National Semiconductor Microwire
	2.8.4 Enhanced SPI Modes
	2.8.4.1 Write Operation in Enhanced SPI Modes
	2.8.4.2 Read Operation in Enhanced SPI Modes
	2.8.4.3 Advanced I/O Mapping for Enhanced SPI Modes

	2.8.5 Dual Data-Rate (DDR) Support in SPI Operation
	2.8.5.1 Transmitting Data in DDR Mode

	2.8.6 Read Data Strobe Signal Support
	2.8.6.1 Design for Test

	2.8.7 XIP Mode Support in SPI Mode
	2.8.7.1 Read Operation in XIP Mode

	2.8.8 Data Mask Support for SPI

	2.9 DMA Controller Interface
	2.9.1 Overview of Operation
	2.9.2 Transmit Watermark Level and Transmit FIFO Underflow
	2.9.3 Choosing the Transmit Watermark Level
	2.9.3.1 Case 1: DMATDLR = 2
	2.9.3.2 Case 2: DMATDLR = 6

	2.9.4 Selecting DEST_MSIZE and Transmit FIFO Overflow
	2.9.5 Receive Watermark Level and Receive FIFO Overflow
	2.9.6 Choosing the Receive Watermark Level
	2.9.7 Selecting SRC_MSIZE and Receive FIFO Underflow
	2.9.8 Handshaking Interface Operation
	2.9.8.1 dma_tx_req, dma_rx_req
	2.9.8.2 dma_tx_single, dma_rx_single

	2.10 APB Interface
	2.10.1 Control and Status Register APB Access
	2.10.2 Data Register APB Access
	2.10.2.1 SSI_MAX_XFER_SIZE = 16
	2.10.2.2 SSI_MAX_XFER_SIZE = 32

	2.10.3 APB 3.0 Support
	2.10.4 APB 4.0 Support

	2.11 Reset Signals

	3 Parameter Descriptions
	3.1 Top Level Parameters
	3.2 SPI Parameters
	3.3 Clocking Parameters

	4 Signal Descriptions
	4.1 APB Slave Interface Signals
	4.2 Serial Interface Signals
	4.3 DMA Interface Signals
	4.4 Slave Interface Signals
	4.5 Master Interface Signals
	4.6 Interrupt Signals

	5 Register Descriptions
	5.1 ssi_memory_map/ssi_address_block Registers
	5.1.1 CTRLR0
	5.1.2 CTRLR1
	5.1.3 SSIENR
	5.1.4 MWCR
	5.1.5 SER
	5.1.6 BAUDR
	5.1.7 TXFTLR
	5.1.8 RXFTLR
	5.1.9 TXFLR
	5.1.10 RXFLR
	5.1.11 SR
	5.1.12 IMR
	5.1.13 ISR
	5.1.14 RISR
	5.1.15 TXOICR
	5.1.16 RXOICR
	5.1.17 RXUICR
	5.1.18 MSTICR
	5.1.19 ICR
	5.1.20 DMACR
	5.1.21 DMATDLR
	5.1.22 DMARDLR
	5.1.23 IDR
	5.1.24 SSI_VERSION_ID
	5.1.25 DRx (for x = 0; x <= 35)
	5.1.26 RX_SAMPLE_DLY
	5.1.27 SPI_CTRLR0
	5.1.28 TXD_DRIVE_EDGE
	5.1.29 RSVD

	6 Programming the DW_apb_ssi
	6.1 Programming Considerations

	7 Verification
	7.1 Overview of Vera Tests
	7.1.1 APB Interface
	7.1.2 DW_apb_ssi as Master
	7.1.3 DW_apb_ssi as Slave
	7.1.4 DW_apb_ssi with DMA Interface
	7.1.5 Interrupts

	7.2 Overview of DW_apb_ssi Testbench

	8 Integration Considerations
	8.1 Reading and Writing from an APB Slave
	8.1.1 Reading From Unused Locations
	8.1.2 32-bit Bus System
	8.1.3 16-bit Bus System
	8.1.4 8-bit Bus System

	8.2 Write Timing Operation
	8.3 Read Timing Operation
	8.4 Accessing Top-level Constraints
	8.5 Coherency
	8.5.1 Writing Coherently
	8.5.1.1 Identical Clocks
	8.5.1.2 Synchronous Clocks
	8.5.1.3 Asynchronous Clocks

	8.5.2 Reading Coherently
	8.5.2.1 Synchronous Clocks
	8.5.2.2 Asynchronous Clocks

	8.6 Performance
	8.6.1 Power Consumption, Frequency, and Area Results

	A Synchronizer Methods
	A.1 Synchronizers Used in DW_apb_ssi
	A.2 Synchronizer 1: Simple Double Register Synchronizer (DW_apb_ssi)
	A.3 Synchronizer 2: Synchronous (Dual-clock) FIFO Controller With Static Flags

	B Application Notes
	B.1 Interfacing DW_apb_ssi and Atmel SPI Devices
	B.1.1 Synopsys SPI Operation
	B.1.2 Atmel SPI Operation
	B.1.3 Interoperability between DW_apb_ssi and Atmel Devices

	B.2 Interfacing DW_apb_ssi with Dual/Quad Capable Devices
	B.2.1 I/O Connection for A Device That Supports Dual/Quad SPI

	C Internal Parameter Descriptions
	D Glossary
	Index

