
DesignWare Synthesizable Components for AMBA 2

DesignWare DW_apb_i2c Databook

DW_apb_i2c

Version 1.08a

April 16, 2007

Copyright Notice and Proprietary Information
Copyright © 2007 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is
the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in
accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or
translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys,
Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to
nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the
applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim, Design
Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, I, iN-Phase, in-Sync, Leda, MAST, Meta, Meta-
Software, ModelAccess, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill, PrimeTime,
RailMill, Raphael, RapidScript, Saber, SiVL, SNUG, SolvNet, Stream Driven Simulator, Superlog, System Compiler, Testify,
TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-
Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis,
Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci,
DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI,
Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ,
Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express,
Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical
Optimization Technology, High Performance Option, HotPlace, HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform
Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler,
Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway,
ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint,
Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS,
Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen,
Raphael-NES, RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger,
Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire,
Source-Level Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT,
Star-Time, Star-XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-Process, Taurus-Topography,
Taurus-Visual, Taurus-Workbench, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand,
True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL
System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

2 Synopsys, Inc. April 16, 2007

DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 3

DesignWare DW_apb_i2c Databook Contents

Contents

Preface . 7
About This Manual . 7

Related Documents . 7
Manual Overview . 7
Typographical and Symbol Conventions . 8

Revision History . 9
Getting Help . 9

Additional Information . 10
Comments? . 10

Chapter 1
Product Overview . 11

DesignWare AMBA System Overview . 11
DesignWare AMBA System Block Diagram . 11

General product Description . 13
DW_apb_i2c Block Diagram . 13

Features . 13
Standards Compliance . 14
Verification Environment Overview . 14
Licenses . 14
Where To Go From Here . 15

Chapter 2
Building and Verifying a Subsystem . 17

Setting up Your Environment . 17
Overview of the Configuration and Integration Process . 18
Start coreAssembler . 21
Add DW_apb_i2c to the Subsystem . 22
Check Your Environment . 27
Configure DW_apb_i2c . 28
Complete Signal Connections . 29
Generate Subsystem RTL . 29
Create Gate-Level Netlist . 30

Checking Synthesis Status and Results . 33
Synthesis Output Files . 34
Running Synthesis from Command Line . 34

Create Component GTECH Simulation Model . 34
Verify Component . 36

Checking Simulation Status and Results . 39
Applying Default Verification Attributes . 39

Verify the Subsystem . 40
Formal Verification . 40
Create Testbench . 40

4 Synopsys, Inc. April 16, 2007

Contents DesignWare DW_apb_i2c Databook

Checking Subsystem Verification Status and Results . 43
Create a Batch Script . 44
Export the Subsystem . 44

Chapter 3
Functional Description . 45

Overview . 45

I2C Terminology . 47

I2C Bus Terms . 47
Bus Transfer Terms . 48

I2C Behavior . 49

I2C Protocols . 50
START and STOP Conditions . 50
Addressing Slave Protocol . 50
Transmitting and Receiving Protocol . 52
START BYTE Transfer Protocol . 53

Multiple Master Arbitration . 54
Clock Synchronization . 55
Operation Modes . 56

Slave Mode Operation . 56
Master Mode Operation . 60
Disabling DW_apb_i2c . 62

IC_CLK Frequency Configuration . 63
DMA Controller Interface . 65

Enabling the DMA Controller Interface . 66
Overview of Operation . 66
Transmit Watermark Level and Transmit FIFO Underflow . 68
Choosing the Transmit Watermark Level . 68
Selecting DEST_MSIZE and Transmit FIFO Overflow . 69
Receive Watermark Level and Receive FIFO Overflow . 70
Choosing the Receive Watermark level . 70
Selecting SRC_MSIZE and Receive FIFO Underflow . 70
Handshaking Interface Operation . 71

APB Interface . 74

Chapter 4
Parameters . 75

Parameter Descriptions . 75
Configuration Parameters . 76

Chapter 5
Signals . 85

DW_apb_i2c Interface Diagram . 86
I/O Connections . 87
DW_apb_i2c Signal Descriptions . 88

April 16, 2007 Synopsys, Inc. 5

DesignWare DW_apb_i2c Databook Contents

Chapter 6
Registers . 99

Register Memory Map . 100
Registers and Field Descriptions . 104

Operation of the Interrupt Registers . 135

Chapter 7
Programming the DW_apb_i2c . 155

Software Registers . 155
Software Drivers . 155

Chapter 8
Verification . 157

Overview of Vera Tests . 157
APB Slave Interface . 158
DW_apb_i2c Master Operation . 158
DW_apb_i2c Slave Operation . 159
DW_apb_i2c Interrupts . 159
DMA Handshaking Interface . 159
DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update 159
Generate NACK as a Slave-Receiver . 159
SCL Held Low for Duration Specified in IC_SDA_SETUP . 159
Generate ACK/NACK for General Call . 160

Overview of DW_apb_i2c Testbench . 160

Chapter 9
Integration Considerations . 163

Digital/Analog Domain Functional Partitioning . 163
Reading and Writing from an APB Slave . 164

Reading From Unused Locations . 164
32-bit Bus System . 165
16-bit Bus System . 166
8-bit Bus System . 166

Write Timing Operation . 167
Read Timing Operation . 168
Accessing Top-level Constraints . 168
 . 169

Appendix A
Building and Verifying Your DW_apb_i2c . 171

Setting Up Your Environment . 171
Starting coreConsultant . 172
Checking Your Environment . 173
Configuring the DW_apb_i2c . 173
Synthesizing the DW_apb_i2c . 174

Checking Synthesis Status and Results . 174
Synthesis Output Files . 174
Running Synthesis from Command Line . 175

6 Synopsys, Inc. April 16, 2007

Contents DesignWare DW_apb_i2c Databook

Other Synthesis Information . 175
Verifying the DW_apb_i2c . 175

Creating GTECH Simulation Models . 175
Verify the Simulation Model . 177
Checking Simulation Status and Results . 180
Creating a Batch Script . 180
Applying Default Verification Attributes . 181

Appendix B
Database Description . 183

Design/HDL Files . 184
RTL-Level Files . 184
Simulation Model Files . 185

Register Map Files . 185
Synthesis Files . 186
Verification Reference Files . 186

Appendix C
DesignWare QuickStart Designs . 187

QuickStart Example Designs . 187

Appendix D
DW_apb_i2c Application Notes . 189

Appendix E
Glossary . 191

Index . 195

April 16, 2007 Synopsys, Inc. 7

DesignWare DW_apb_i2c Databook Preface

Preface

About This Manual
This databook provides information that you need to interface the DW_apb_i2c to the Advanced
Peripheral Bus (APB). The DW_apb_i2c conforms to the AMBA Specification, Revision 2.0 from
ARM.

The information in this databook includes an overview, pin and parameter descriptions, a memory map,
and functional behavior of the component. An overview of the testbench, a description of the tests that
are run to verify the coreKit, and synthesis information for the component are also provided.

Related Documents
To see a complete listing of documentation within the DesignWare Synthesizable Components for
AMBA 2, refer to the Guide to DesignWare AMBA IP Component Documentation.

Manual Overview
This manual contains the following chapters and appendixes:

Chapter 1
“Product Overview”

Provides a DesignWare AMBA System Overview, a component block
diagram, basic features, and an overview of the verification environment.

Chapter 2
“Building and Verifying a
Subsystem”

Provides getting started information that allows you to walk through the
process of using the DW_apb_i2c with Synopsys’ coreAssembler tool.

Chapter 3
“Functional Description”

Describes the functional operation of the DW_apb_i2c.

Chapter 4
“Parameters”

Identifies the configurable parameters supported by the DW_apb_i2c.

Chapter 5
“Signals”

Provides a list and description of the DW_apb_i2c signals.

Chapter 6
“Registers”

Describes the programmable registers of the DW_apb_i2c.

Chapter 7
“Programming the DW_apb_i2c”

Provides information needed to program the configured DW_apb_i2c.

Chapter 8
“Verification”

Provides information on verifying the configured DW_apb_i2c.

Chapter 9
“Integration Considerations”

Includes information you need to integrate the configured DW_apb_i2c
into your design.

http://www.synopsys.com/cgi-bin/designware/amba_ct.cgi

8 Synopsys, Inc. April 16, 2007

Preface DesignWare DW_apb_i2c Databook

Typographical and Symbol Conventions
The following conventions are used throughout this document:

Appendix A
“Building and Verifying Your
DW_apb_i2c”

Provides getting started information that allows you to walk through the
process of using the DW_apb_i2c with Synopsys coreConsultant tool.

Appendix B
“Database Description”

Provides deliverables and reference files generated from the
coreConsultant flow.

Appendix C
“DesignWare QuickStart
Designs”

Provides the locations of QuickStart examples that integrate most
DesignWare AMBA Synthesizable Components into an SoC design that
you can simulate.

Appendix D
“DW_apb_i2c Application
Notes”

Contains information about application notes for the DW_apb_i2c
component.

Appendix E
“Glossary”

Provides a glossary of general terms.

Table 1: Documentation Conventions

Convention Description and Example

% Represents the UNIX prompt.

Bold User input (text entered by the user).
% cd $LMC_HOME/hdl

Monospace System-generated text (prompts, messages, files, reports).
No Mismatches: 66 Vectors processed: 66 Possible"

Italic or Italic Variables for which you supply a specific value. As a command line example:
% setenv LMC_HOME prod_dir

In body text:
In the previous example, prod_dir is the directory where your product must be
installed.

| (Vertical rule) Choice among alternatives, as in the following syntax example:
-effort_level low | medium | high

[] (Square brackets) Enclose optional parameters:
pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 … pinN]).

TopMenu > SubMenu Pulldown menu paths, such as:
File > Save As …

April 16, 2007 Synopsys, Inc. 9

DesignWare DW_apb_i2c Databook Preface

Revision History
This table shows the revision history for the databook from release to release. This is being tracked
from version 1.08a onward.

Getting Help
If you have a question about using Synopsys products, please consult product documentation that is
installed on your network or located at the root level of your Synopsys product CD-ROM (if available).
You can also access documentation for DesignWare products on the Web:

● Product documentation for many DesignWare products:

http://www.synopsys.com/designware/docs

● Datasheets for individual DesignWare IP components, located using “Search for IP”:

http://www.synopsys.com/designware

You can also contact the Synopsys Support Center in the following ways:

● Open a call to your local support center using this page:

http://www.synopsys.com/support/support.html

Table 2: Databook Revision History

Version Databook Date Description

1.06a September 19, 2006

1.08a March 6, 2007 ● Fixed following doc and RTL STARs:

9000087109: Updated the IC_TAR register update rules to remove
RdReqMode.

9000099055: Corrected an incorrect description of the RD_REQ bit in
the IC_RAW_INTR_STAT register.

9000099184: Remove an incorrect statement in the IC_ENABLE[0]
register bit field concerning the disabling of the I2C. The
incorrect statement regarding what occurs when I2C is
disabled was:
“The interrupt bits in the IC_RAW_INTR_STAT register
are cleared.”

9000160810: Updated the IC_DMA_TDLR register with the correct
width of TX_ABW–1:0.

9000160811: Corrected the reserved bit field of the IC_DMA_TDLR
register to be 31:TX_ABW instead of 31: TX_ABW+1.

9000160811: Added an explanation of how the Derived Constants in
Table 9 on page 84 are created.

● Removed IC_RX_FULL_GEN_NACK configuration parameter.

● RTL bug fixes. See the DesignWare DW_apb_i2c Release Notes.

● Fixed a “glitch” that was found when DW_apb_i2c generated a
RESTART. For more information, see the DesignWare DW_apb_i2c
Release Notes.

http://www.synopsys.com/designware/docs
http://www.synopsys.com/designware
http://www.synopsys.com/support/support.html

10 Synopsys, Inc. April 16, 2007

Preface DesignWare DW_apb_i2c Databook

● Send an e-mail message to support_center@synopsys.com.

● Telephone your local support center:

❍ United States:
Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ Canada:
Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific Time, Mon—Fri.

❍ All other countries:
Find other local support center telephone numbers at the following URL:

http://www.synopsys.com/support/support_ctr

Additional Information
For additional Synopsys documentation, refer to the following page:

http://www.synopsys.com/designware/docs

For up-to-date information about the latest Synthesizable IP and verification models, visit the
DesignWare home page:

http://www.synopsys.com/designware

Comments?
To report errors or make suggestions, please send e-mail to:

support_center@synopsys.com.

To report an error that occurs on a specific page, select the entire page (including headers and footers),
and copy to the buffer. Then paste the buffer to the body of your e-mail message. This will provide us
with information to identify the source of the problem.

mailto:support_center@synopsys.com
http://www.synopsys.com/support/support_ctr/
http://www.synopsys.com/designware/docs
http://www.synopsys.com/designware
mailto:support_center@synopsys.com

April 16, 2007 Synopsys, Inc. 11

DesignWare DW_apb_i2c Databook Product Overview

1
Product Overview

This chapter describes the DesignWare APB I2C Interface Peripheral, referred to as DW_apb_i2c. The
DW_apb_i2c component is an AMBA 2.0-compliant Advanced Peripheral Bus (APB) slave device and
is part of the family of DesignWare AMBA Synthesizable Components.

The topics included in this chapter are:

● “DesignWare AMBA System Overview”
● “General product Description” on page 13
● “Features” on page 13
● “Standards Compliance” on page 14
● “Verification Environment Overview” on page 14
● “Licenses” on page 14
● “Where To Go From Here” on page 15

DesignWare AMBA System Overview
The Synopsys DesignWare AMBA Synthesizable Components environment is a parameterizable bus
system containing AMBA version 2.0-compliant AHB (Advanced High-performance Bus) and APB
(Advanced Peripheral Bus) components.

DesignWare AMBA System Block Diagram
The following figure illustrates one example of this environment, including the AHB bus, the APB Bus
(includes the APB Bridge), AHB multi-layer interconnect IP, APB peripheral components, verification
Master/Slave models, and bus monitors. In order to display the databook for a DW_* component, click
on the corresponding component object in the illustration.

Attention
Links resolve only if you are viewing this databook from your $DESIGNWARE_HOME
tree, and to only those components that are installed in the tree.

12 Synopsys, Inc. April 16, 2007

Product Overview DesignWare DW_apb_i2c Databook

Figure 1: Example of DW_apb_i2c in a Complete System

DW_ahbDW_apb

Star IP

apb_monitor_vmt

DW_ahb (2)

DW_ahb_icm

DW_memctl DW_ahb_dmac

AHB/APB Bridge

DW_ahb_h2h,
DW_ahb_eh2h

Application-
Specific

ahb_monitor_vmt

DW_apb_ictl

DW_apb_rtc

DW_apb_uart

DW_apb_ssi

DW_apb_rap DW_apb_timers

DW_apb_wdtDW_apb_gpio

Third-party
Peripherals

Logic

Application-
Specific

Logic

High-speed

USB, Ethernet,
PCI-X, and so on

Peripherals

DW_ahbDW_ahb

DW_ahb_ictl

Arbitration,
Decode, & Mux

Third-party
Peripherals

DW_ahb_dmac

APB Slave
BIMs

AHB Master/Slave
BIMs

RAM
Memory Models

DW_apb_i2c

μPs

April 16, 2007 Synopsys, Inc. 13

DesignWare DW_apb_i2c Databook Product Overview

General product Description
The DW_apb_i2c is a configurable, synthesizable, and programmable control bus that provides support
for the communications link between integrated circuits in a system. It is a simple two-wire bus with a
software-defined protocol for system control, which is used in temperature sensors and voltage level
translators to EEPROMs, general-purpose I/O, A/D and D/A converters, CODECs, and many types of
microprocessors.

DW_apb_i2c Block Diagram
Figure 2 illustrates a simple block diagram of DW_apb_i2c. For a more detailed block diagram and
description of the component, refer to Chapter 3, “Functional Description” on page 45.

.

Figure 2: Block Diagram of DW_apb_i2c

Features
DW_apb_i2c has the following features:

I2C Features

● Two-wire I2C serial interface – consists of a serial data line (SDA) and a serial clock (SCL)
● Three speeds:

❍ Standard mode (100 Kb/s)
❍ Fast mode (400 Kb/s)
❍ High-speed mode (3.4 Mb/s)

● Clock synchronization
● Master OR slave I2C operation

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

14 Synopsys, Inc. April 16, 2007

Product Overview DesignWare DW_apb_i2c Databook

● 7- or 10-bit addressing
● 7- or 10-bit combined format transfers
● Bulk transmit mode
● Ignores CBUS addresses (an older ancestor of I2C that used to share the I2C bus)
● Transmit and receive buffers
● Interrupt or polled-mode operation
● Handles Bit and Byte waiting at all bus speeds
● Simple software interface consistent with DesignWare APB peripherals
● Component parameters for configurable software driver support
● DMA handshaking interface compatible with the DW_ahb_dmac handshaking interface

The DW_apb_i2c requires external hardware components as support in order to be compliant in an I2C
system. The descriptions are detailed later in this document.

It must also be noted that the DW_apb_i2c should only be operated either as (but not both):

● A sole master in an I2C system and programmed only as a Master; OR

● A slave in an I2C system and programmed only as a Slave.

DesignWare AMBA APB Slave Interface
● Support for APB data bus widths of 8, 16, and 32 bits

Source code for this component is available on a per-project basis as a DesignWare Core; contact your
local sales office for the details.

Standards Compliance
The DW_apb_i2c component conforms to the AMBA Specification, Revision 2.0 from ARM. Readers
are assumed to be familiar with this specification.

Verification Environment Overview
The DW_apb_i2c includes an extensive verification environment, which sets up and invokes your
selected simulation tool to execute tests that verify the functionality of the configured component. You
can then analyze the results of the simulation.

The “Verification” on page 157 chapter discusses the specific procedures for verifying the
DW_apb_i2c.

Licenses
Before you begin using the DW_apb_i2c, you must have a valid license. For more information, refer to
“Licenses” in the DesignWare AMBA Synthesizable Components Installation Guide.

http://www.synopsys.com/cgi-bin/designware/amba_ct.cgi

April 16, 2007 Synopsys, Inc. 15

DesignWare DW_apb_i2c Databook Product Overview

Where To Go From Here
At this point, you may want to get started working with the DW_apb_i2c component within a
subsystem or by itself. Synopsys provides several tools within its coreTools suite of products for the
purposes of configuration, synthesis, and verification of single or multiple synthesizable IP
components—coreConsultant and coreAssembler. For information on the different coreTools, refer to
Guide to coreTools Documentation.

While coreConsultant is the basic tool used to create a workspace for a single component,
coreAssembler enables you to work with a component within the context of a subsystem. (A workspace
is your working version of a DesignWare AMBA Synthesizable IP component.) Additionally,
coreAssembler provides additional subsystem simulation functionality that enhances coreAssembler.

The following table provides common activities and the recommended tool for either single or multiple
components.

For more information about implementing your DW_apb_i2c component within a DesignWare AMBA
subsystem using coreAssembler, refer to Chapter 2, “Building and Verifying a Subsystem” on page 17.

For more information about configuring, synthesizing, and verifying just your DW_apb_i2c
component, refer to Appendix A, “Building and Verifying Your DW_apb_i2c” on page 171.

Table 3: Tool Comparison

Activity Recommended Tool

Single Component

Configuration coreConsultant

Synthesis coreConsultant

Verification coreConsultant

Multiple Components

Configuration coreAssembler

Synthesis coreAssembler

Formal verification coreAssembler

Creation of top-level subsystem RTL coreAssembler

Address map creation coreAssembler

Subsystem simulation coreAssembler

Creation of subsystem templates coreAssembler

Importation of non-DesignWare IP coreAssembler

16 Synopsys, Inc. April 16, 2007

Product Overview DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 17

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

2
Building and Verifying a Subsystem

This chapter documents the step-by-step process you use to connect, configure, synthesize, and verify a
DW_apb_i2c component within a simple DesignWare AMBA subsystem using the coreAssembler
tool. You use coreAssembler to create a workspace, which is your working version of a DesignWare
AMBA Synthesizable IP (SIP) subsystem. You can create several workspaces to experiment with
different design alternatives.

When used with the DesignWare Library, coreAssembler adds subsystem simulation to the standard
coreAssembler functionalities. For detailed information about coreAssembler, refer to the
coreAssembler User Guide.

If you want to build and verify only one component, coreConsultant is most likely the best tool for you
to use. For specific information about using coreConsultant to configure, synthesize, and verify your
DW_apb_i2c component, refer to Appendix A on page 171.

The topics in this chapter are as follows:

1. “Setting up Your Environment” on page 17
2. “Overview of the Configuration and Integration Process” on page 18
3. “Start coreAssembler” on page 21
4. “Check Your Environment” on page 27
5. “Add DW_apb_i2c to the Subsystem” on page 22
6. “Configure DW_apb_i2c” on page 28
7. “Complete Signal Connections” on page 29
8. “Generate Subsystem RTL” on page 29
9. “Create Gate-Level Netlist” on page 30

10. “Create Component GTECH Simulation Model” on page 34
11. “Verify Component” on page 36
12. “Verify the Subsystem” on page 40
13. “Create a Batch Script” on page 44
14. “Export the Subsystem” on page 44

Setting up Your Environment
DW_apb_i2c is included with a DesignWare Synthesizable Components for AMBA 2 release; it is
assumed that you have already downloaded and installed the release. However, to download and install
the latest versions of required tools, refer to the DesignWare AMBA Synthesizable Components
Installation Guide.

18 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

You also need to set up your environment correctly using specific environment variables, such as
DESIGNWARE_HOME, VERA_HOME, PATH, and SYNOPSYS. If you are not familiar with these
requirements and the necessary licenses, refer to “Setting up Your Environment” in the DesignWare
AMBA Synthesizable Components Installation Guide.

Overview of the Configuration and Integration Process
Once you have correctly downloaded and installed a release of DesignWare AMBA synthesizable
components and then set up your environment, you can begin building your DesignWare AMBA
subsystem with coreAssembler.

Figure 3 illustrates coreAssembler’s usage flow from invoking the tool to creating a workspace to
stepping through the activities in the GUI. Table 4 on page 18 provides a description of the workspace
directory and subdirectories.

Figure 3: coreAssembler Usage Flow

Table 4: coreAssembler Workspace Directory Contents

Directory/Subdirectory Description

Directories containing files to be used after exiting coreAssembler.

export Contains the files you will need once you exit coreAssembler. These files
will be used to integrate the results from the completed source
configuration and synthesis activities into your larger system (outside
coreAssembler). An index.html file in this directory describes all of the
exported files. For more details about the files in this directory, refer to
“Export Directory” in Using DesignWare Library IP in coreAssembler.

src Includes the subsystem top-level RTL file, design_name.v.

mydesign

export report simsrc syn
header files
sample instantiation

verification file list

bin
mydesign.v

gate-level

synthesissynthesis constraints

stimulus
testbench

netlist

control files

coreAssembler Workspace

Run coreAssembler
% cd <working directory>

1

Create workspace2

components kb scratch

i_ahb

i_apb

i_wdt
synthesis netlist

synthesis
reports

% coreAssembler

Use coreAssembler to create, synthesize, and verify your subsystem3

…
…

Implementation
Workspace Only

Testbench
Workspace
Only

April 16, 2007 Synopsys, Inc. 19

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

Directories containing files not generally used after exiting coreAssembler.

components Includes a directory for each DW AMBA Synthesizable IP instance
connected in the subsystem.

components/instance_name Contains the data for each IP component instance. This is the instance
name of the component used in the design. Each instance_name directory
is equivalent to a coreConsultant component workspace. See the IP
component’s databook for details of this directory structure.

kb Contains knowledge base information used by coreAssembler. These are
binary files containing the state of the design.

report Contains all of the reports created by coreAssembler during build,
configuration, test and synthesis phases. An index.html file in this
directory links to many of these generated reports.

scratch Contains temp files used during the coreAssembler processes.

syn Contains synthesis files for the subsystem. This directory is created when
you complete all of the activities in the Create Gate-Level Netlist
(synthesis) activity group in coreAssembler.

Table 5: coreAssembler Testbench Workspace Directory Contents

Directory/Subdirectory Description

Directories containing files to be used after exiting coreAssembler.

export Contains the files you will need once you exit coreAssembler. These files
will be used to integrate the results from the completed verification
activities into your larger system (outside i2c). An index.html file in this
directory describes all of the exported files. For more details about the files
in this directory, refer to “Export Directory” in Using DesignWare Library
IP in coreAssembler.

sim/stimulus/component_name Contains the test stimulus files in Verilog and C.

sim/testbench/all Includes the testbench file for the DUT, design_name_tb.v, subsystem
source file list, design_name.lst, and simulation execution script run.scr.

src Includes the testbench top-level RTL file, design_name.v.

Directories containing files not generally used after exiting coreAssembler.

components Includes a directory for the DUT, and a directory for each DW AMBA
Verification IP connected in the subsystem.

kb Contains knowledge base information used by coreAssembler. These are
binary files containing the state of the design.

Table 4: coreAssembler Workspace Directory Contents (Continued)

Directory/Subdirectory Description

20 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

report Contains all of the reports created by coreAssembler during testbench
build and configuration phases. An index.html file in this directory links to
many of these generated reports.

scratch Contains temp files used during the coreAssembler processes.

sim Includes simulation files for the testbench. This directory is created when
you complete the Simulate Subsystem activity.

sim/testbench/all/cov_results Includes the various coverage results of the verified subsystem

syn This directory is created but not populated for the Create Testbench
activity group in coreAssembler.

Table 5: coreAssembler Testbench Workspace Directory Contents (Continued)

Directory/Subdirectory Description

April 16, 2007 Synopsys, Inc. 21

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

Start coreAssembler
To invoke coreAssembler:

1. In a UNIX shell, navigate to a directory where you plan to locate your component workspace.

2. Invoke the coreAssembler tool:

% dw_connect

The welcome page is displayed, similar to the one below.

3. Click on “create a new AMBA subsystem now” link to create a new workspace. After you have
created a workspace, you can also continue working from the point you left off by using the “open
an existing AMBA subsystem” link to open it back up.

A “Create a New Workspace” message appears, which explains some of the terms used by
coreAssembler. Read this information and then click OK.

Activity List
pane

Activity View
pane

Console

Command Line
pane

pane

22 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

4. In the resulting dialog box, specify the workspace name, workspace root directory, and design
name, or leave the defaults. To find out more about the fields in this dialog box, you can right-click
over the specific item to get What’s This help.

The following describes these items in more detail:

❍ Workspace name - the name of the Unix directory where the database containing all of your
design files will be kept.

❍ Workspace root directory - the name of the Unix directory that is the “parent” to your
workspace directory (Workspace name).

❍ Design name - the top-level design name that is used in the top-level RTL file.

At this point, coreAssembler creates in the workspace an export directory that will eventually
contain the files you need once you exit coreAssembler. For an explanation of this directory, see
Table 4 on page 18. You can use these files for your own chip-level synthesis and simulation. A
README file and an index.html file in this directory (created after you add components) both
describe all of the exported files in this directory.

In the coreAssembler GUI, an empty schematic window is displayed and the Add Subsystem
Components activity is highlighted under the Create RTL category in the Activity List on the left.

For more information about coreAssembler, refer to the coreAssembler User Guide. For more
in-depth tutorials, refer to the “DesignWare Library IP in coreAssembler Tutorials” chapter of
Using DesignWare Library IP in coreAssembler. For tables that list the contents of the export
directory at each step of the Subsystem assembly process, refer to “Export Directory” in Using
DesignWare Library IP in coreAssembler.

Add DW_apb_i2c to the Subsystem
In a minimal subsystem using the DW_apb_i2c component, you would also have an AHB bus, an APB
bus, and most likely a “dummy” AHB master. Therefore, the subsystem described in this chapter
contains the following components: DW_apb_i2c, DW_ahb, DW_apb, and AHB Master. The last
component is one that you will export up and out of the design to be replaced by your real AHB Master,
such as a CPU, which you would probably add in your own environment later in the design process. At
least one exported AHB master interface is required in the subsystem if you intend to do a basic “ping
test” simulation.

Figure 4 illustrates the DW_apb_i2c in a simple subsystem.

April 16, 2007 Synopsys, Inc. 23

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

Figure 4: DW_apb_i2c in Simple Subsystem

The following procedure steps you through the process of creating a simple subsystem with a
DW_apb_i2c component.

1. Use the Schematic > Add New Component menu item to display the Add Component Instance to
Subsystem dialog; alternatively, you can right-click in the schematic window and choose Add
New Component from the popup menu or use the Insert key.

2. In the Add Component Instance to Subsystem dialog, click on the specific component to add it:
DW_apb, DW_ahb, DW_apb_i2c. Click Apply.

You will notice that the hresetn and hclk inputs are automatically connected together, and that the
AHB_Slave1 output of the DW_ahb is connected to the AHB_Slave input of the DW_apb.

3. Notice that the DW_ahb instance is red in the schematic view. Toggle over to the tree view by

clicking the toggle icon on the toolbar and expand the i_ahb component instance. The AHB

Master line in the Interface Connections says that it is missing a connection, and the
i_ahb/Remap-Pause line shows it as disconnected.

First, you are going to export an AHB master interface from the DW_ahb.

m

s

s

User’s System/Chip
DesignWare AMBA

manually exported interfaces to non-DesignWare AMBA IP
automatically exported interfaces from DesignWare peripheral IP

non-DW AMBA IP
(custom AHB master)

DW_ahb

DW_apb_i2c
Bridge

(DW_apb)

Subsystem

24 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

4. To export an AHB master interface, select the AHB Master line in the tree view, right-click, and
then select Export Interface as illustrated in the following figure.

The “Export Interface Instance from Subsystem” dialog opens. For this exercise, keep the default
naming and click OK.

Note
There are two types of configuration: that which affects external interfaces, and that which
doesn’t. Changing address and/or data bus widths, and endianness, affects external
interfaces. These configuration changes must be completed during the Add Subsystem
Components activity, since they affect other subsystem components as well. Later you will
use the Configure Components activity to change a component’s internal configuration.

At this stage, you can configure DW_apb_i2c to include an interrupt output for every interrupt.
You can also specify the polarity of the interrupts.

These parameters are Interface Parameters because changing them may affect connectivity with
other subsystem components. Therefore, you must determine these settings at the subsystem
configuration level. Later in “Configure DW_apb_i2c” on page 28, Configuration Parameters are
defined. These are component-level parameters and do not affect interfaces to other components.

April 16, 2007 Synopsys, Inc. 25

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

For demonstration purposes, change the configuration so that the component has a individual
signals for all of the interrupts. To change this setting, do the following:

a. Right-click on the DW_apb_i2c component (i_i2c) in the tree view and choose the Edit
Interface Parameters menu item to display the i_i2c Interface Configuration dialog.

b. Click the check box in the “Single Interrupt output port present” field.

c. Click OK.

5. You now have a rudimentary subsystem that includes the DW_apb_i2c component. Next try to
complete the Add Subsystem Components activity by clicking the Apply button in the lower right
corner below the schematic. Alternatively, you can just click on the next activity (Configure
Components), and answer “yes” to the pop-up window.

An error message appears telling you that there is a problem because the remap/pause signal in the
DW_ahb is not connected. Notice that the DW_ahb component is still red, indicating that there is
some kind of problem. The Console pane at the bottom of the GUI gives you additional
information about the error, as illustrated in the following figure.

Note
If you want to obtain more information about a particular error, you can issue the
following command in the Command Line below the Console pane:

% man error number

6. Because you do not need the remap/pause feature in this subsystem, set that interface as “unused.”
OK the error message and right-click on the i_ahb/Remap-Pause interface and choose the Set
Unused menu item. Notice that the DW_ahb is no longer red.

26 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

You can see in the following illustration the difference between how the tree view displays an error
and how it looks when the error is resolved.

7. Click the Apply button again to complete the Add System Components activity.

8. When a message box asks you if you want to initialize the subsystem address map, click Yes.

Automatic address map creation is discussed in more detail in the next section “Configure
DW_apb_i2c” on page 28. The coreAssembler tool creates the files described below in the export
directory for this activity.

New Contents of Export Directory after Add Subsystem Components

Directory or File Description

batch.tcl Batch script for recreating completed activities associated with subsystem
assembly. This file gets updated after the following activities are completed:

● Add Subsystem Components

● Complete Connections

● Simulate Subsystem

● Create Gate-Level Netlist

index.html HTML file containing descriptions of files created in export directory after the
Add Subsystem Components step.

README Text file containing descriptions of files created in the export directory after the
Add Subsystem Components step.

Before After

April 16, 2007 Synopsys, Inc. 27

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

Attention
If you are using a newer version of coreAssembler, you are presented an IP Update Check
report window, comparing your components to those in your DESIGNWARE_HOME
tree, and also the latest currently available from Synopsys (via the web). STAR updates
are also listed in this report, to help you determine if you need to make an update. Viewing
STARs and downloading components from Synopsys requires SolvNet authentication.

The first time you use this feature, you are prompted to enable automatic update checking,
and to specify the interval between checks. You can change these preferences at any time
using the Edit > Preferences menu item.

For more information on the IP Update Checking feature, refer to “Component Update
Checking” in the coreAssembler User Guide.

9. coreAssembler displays a report for the subsystem, which includes a number of hyperlinks to
sections further down in the page for unconnected interfaces, subsystem components, exported
interface connections, component interface connections, and subsystem ports to be created. You
should familiarize yourself with the information in all reports before going to any new activity.

Check Your Environment
Before you begin configuring your components, it is recommended that you check your environment to
ensure you have the latest tool versions installed and your environment variables set up correctly. You
must have at least one DesignWare Library component instantiated in your workspace for this
environment check feature to appear.

To check your environment, use the Help > Help for component /comp > Check Tool Environment...
menu path.

An HTML report is displayed in a separate dialog. This report lists the specific tools and versions
installed in your environment. It also displays errors when a specific tool is not installed or if you are
using an older version than required.

Note
For more information about setting the appropriate environment variables for your
simulator, refer to “Setting up Your Environment” in the DesignWare AMBA Synthesizable
Components Installation Guide.

You will also see an error if your $DESIGNWARE_HOME environment variable has not been set up
correctly. When you are finished, click OK.

28 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

Configure DW_apb_i2c
This section steps you through the tasks that configure the component-level parameters (configuration
parameters) for DW_apb_i2c in coreAssembler. For this exercise, you will not configure any of the
components in this example subsystem, but instead leave them with their default parameter values.

If you need help with any field in the Activity List pane, right-click on the field name and then
left-click on the What’s This box to get specific information for that item. Additionally, you can click
on the Help tab (lower-left corner of the Activity View pane) for each activity to activate the
coreAssembler online help.

1. Configure Components – The Configure Components activity is where you specify the basic
configuration of the DW_apb_i2c; click on that item in the Activity List.

2. Click the DW_apb_i2c item (also called i_i2c) to display the Top Level Parameters window.
Notice that several parameters are greyed out, such as APB data bus width.

Some of these parameters are interface parameters—parameters that may affect component
interfaces. Interface parameters are always defined during the Add Subsystem Components
activity. In the previous exercise, you changed the interrupt pinout configuration to a single
combined interrupt.

If you were to decide at this point to change any of the interface parameters, you would simply
click on the Add Subsystem Components activity, again click on the i_i2c component in either the
schematic or tree views, and then change and apply the new interface parameter values.

3. Because you clicked “Yes” when the dialog asked if you wanted to initialize the subsystem address
map at the completion of the Add Subsystems Components activity, look at the results.

a. Click on the DW_apb (i_apb) item, and then click on the “Address Map” item.

b. Notice that the APB start address is 0x00000000 and that the end address is 0x000043ff,
which is the same as the start and end addresses of the DW_apb_i2c, listed as Slave 0. If you
had connected one or more APB slaves to the DW_apb component, then the start and end
address of the DW_apb would have reflected the start address of Slave 0 and the end address
of the last slave. Similarly, you can view the automatically generated address map in the
DW_ahb component.

All DW_apb_i2c parameters are explained in detail in “Parameters” on page 75.

4. Click the Apply button to the default configuration parameters. coreAssembler creates no files in
the export directory for this activity.

When the configuration setup is complete, the Report tab is displayed, which gives you a list of
configuration reports for all the components in the subsystem. At minimum, click on the link to the
configuration report for DW_apb_i2c. Look at any source files to which you have access (in
encrypted format if you have a DesignWare license, and unencrypted if you have a source license)
and look at all the parameters that have been set for this particular configuration.

April 16, 2007 Synopsys, Inc. 29

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

Complete Signal Connections
You can use the Complete Connections activity to connect any pins that were not automatically
connected as part of an interface. Unconnected input pins can be connected to unconnected output pins,
tied off to a constant value, or exported from the subsystem (that is, connected to an automatically
created input port of the subsystem). Unconnected output pins can be connected to an existing input
pin, explicitly marked as unconnected (open), or exported from the subsystem.

In this exercise, you will leave everything in its default situation. If you want to learn more about
completing signal connections, refer to the “Complete Connections” section in the coreAssembler User
Guide, which you can access through the Help > coreAssembler Tool Help > User’s Guide menu
item. For now, do the following:

1. Complete Connections – Click on Complete Connections in the Activity List.

2. Examine the Manual Connect and Manual Disconnect tabs; leave the defaults and Apply the
dialog.

Notice that there are hyperlinks to information regarding automatic connections (in a separate
HTML file) and sections further down in the file for other connections and unconnected subsystem
ports and component pins. coreAssembler adds no new files to the export directory for this activity
but only updates the batch.tcl file.

Generate Subsystem RTL
You can create top-level code for the subsystem in either VHDL or Verilog using the Generate
Subsystem RTL task in the Activity List. In the dialog that appears in the Activity View pane, you
choose the output language.

1. Generate Subsystem RTL – Click on Generate Subsystem RTL in the Activity List.

2. If you are using a Verilog simulator (such as VCS), choose the default Verilog language and Apply
the activity.

3. If you are using a VHDL simulator, click the button for VHDL as the output language and then
choose between std_logic or std_ulogic. You can also choose whether to include testbench probe
signals.

4. You can optionally insert comment text into the comment field that will be inserted into the header
of each subsystem-level RTL file.

Note
This dialog only selects the HDL language for the top-level RTL for the subsystem. For all
DesignWare Synthesizable Components for AMBA 2, the component RTL is written in
Verilog.

New Contents of Export Directory after Complete Connections

Directory or File Description

batch.tcl Updated to include all activities completed to this point. You can use this script
to recreate the entire workspace up to this point in the Activity List.

30 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

5. Click Apply. Regardless of whether you use a Verilog or VHDL simulator, coreAssembler creates
both Verilog and VHDL files in workspace/src and workspace/export directories. If you choose a
Verilog simulator, the VHDL files will default to std_logic. coreAssembler creates the following
files in the export directory for this activity.

6. Familiarize yourself with the generated RTL files.

Create Gate-Level Netlist
To run synthesis on the subsystem and create a gate-level netlist, step through the following tasks in the
coreAssembler GUI. You need to click the check box next to each activity in order to access the
specific activity dialog. At any time, you can click on the Help tab for each activity to display more
information.

1. Look at the tool installation root directories in the Tool Installation Roots dialog, which is accessed
from the toolbar menu through Edit > Tool Installation Roots, or by using the Tools button on the
toolbar. You can type values directly in the data fields, or use the buttons to locate the correct
directories. The tool choices are:

❍ Design Compiler (dc_shell) – Specifies the location for the root directory of the Design
Compiler installation, if different from the default location.

❍ Physical Compiler (psyn_shell) – Enables the Physical Compiler if you plan to use an
incremental physical synthesis strategy or if you plan to do RTL to place gates.

❍ Primetime (pt_shell) – Enables Primetime if you plan to implement budgeting or generate
timing models.

❍ Formality (fm_shell) – Enables Formality if you plan to formally verify the synthesized
gate-level implementation of the core.

❍ DC FPGA (fpga_shell) – Enables Design Compiler FPGA if your synthesis targets high-end
FPGA devices.

❍ Tetramax (tmax) – Specifies the path to the Tetramax utility that is used with ATPG.

New Contents of Export Directory after Generate Subsystem RTL

Directory or File Description

batch.tcl No updates.

workspace.lst List of source files in proper analysis order for entire subsystem.

workspace_comp.vhd VHDL component declaration for subsystem.

workspace_inst.v Verilog Testbench template; example subsystem instantiation.

workspace_inst.vhd VHDL Testbench template; example subsystem instantiation.

workspace_params.h C subsystem configuration information.

workspace_params.v Verilog subsystem configuration information.

workspace_params.vhd VHDL subsystem configuration information.

April 16, 2007 Synopsys, Inc. 31

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

❍ VCS (vcs) – Specifies the path to the VCS simulator.

❍ VCSI (vcsi) – Specifies the path to the VCSI simulator.

❍ Vera (vera) – Specifies the path to the Vera used for VIP simulation.

❍ MTI ModelSim (vsim) – Specifies the location of the ModelSim simulator

❍ NC Verilog/VHDL (ncsim) – Specifies the location of the NC Verilog/VHDL simulator.

At a minimum for this exercise, dc_shell must have defined installation directories, and in order to
complete the optional formal verification in this chapter, you will also need fm_shell. You can also
specify simulator paths during setup for the verification activities.

Select the “64 Bit?” checkbox if the 64-bit version of the tool is needed (and available).

Cancel the “Set tool installation roots” to examine the following activities.

2. Specify Target Technology – coreAssembler analyzes the target technology library and uses it to
generate a synthesis strategy that is optimized for your technology library. A separate specification
exists for Logical (dc_shell) and Physical (psyn_shell) libraries by choosing the appropriate tab.
For the Logical Library paths, a target and a link library path must be specified for dc_shell;
otherwise, errors occur in coreAssembler.

This screen provides fields for you to enter the search path for the specific compiler, as well as
target and link library paths. If necessary, specify the search path for the tool you specified in the
previous screen. Also, specify the path to the target and link libraries. Click Apply and familiarize
yourself with the resultant report, which gives you the technology information.

3. Initialize Subsystem Constraints – In this activity, you can review and modify any existing
subsystem-level clocks and then initialize subsystem constraints from component constraints.
Click Apply and familiarize yourself with the resultant report.

4. Specify Clock(s) – In the Specify Clock(s) activity, look at the attributes associated with each of
the real and virtual clocks in your design. Click Apply and familiarize yourself with the resultant
report, which gives you clock information.

5. Specify Operating Conditions and Wire Loads – In the Specify Operating Conditions and Wire
Loads activity, look at the attributes relating to the chip environment. If you do not see a value
beside OperatingConditionsWorst, select an appropriate value from the drop-down list; if there is
no value for this attribute, you will get an error message. Click Apply and look at the report, which
gives the operating conditions and wireload information.

6. Specify Port Constraints – In the Specify Port Constraints activity, look at the attributes
associated with input delay, drive strength, DRC constraints, output delay, and load specifications.
Click Apply and look at the report, which gives the port constraint checks.

7. Specify Synthesis Methodology – In the Specify Synthesis Methodology activity, look at the
synthesis strategy attributes. Note that these attributes are typically set by the core developer and
are not required to be modified by the core integrator. If you want to add your own commands
during a synthesis, you use the Advanced tab in order to provide path names to your auxiliary
scripts. Also, click on the Physical Synthesis tab to familiarize yourself with those options. Click
Apply and look at the report, which gives design information. For more information on adding
auxiliary scripts, refer to “Advanced Synthesis Methodology Attributes” in the coreAssembler
User Guide.

32 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

8. Specify Test Methodology – In the Specify Test Methodology activity, look at the scan test
attributes. Also click on the other tabs to familiarize yourself with auto-fix attributes, SoC test
wrapper attributes, test wrapper integration attributes, BIST attributes, and BIST testpoint
insertion attributes. This activity only defines the test methodology. Design for Test insertion is
enabled or disabled in the Synthesis activity, explained next. Click Apply and look at the report,
which gives design-for-test information.

9. Synthesize – Choose the Synthesize activity. Do the following:

a. Choose the Strategy tab.

b. Click the Options button beside DCTCL_opto_strategy and look through the strategy
parameters. For example, you can use the Gate Clocks During Elaboration check box in the
Clock Gating tab in order to add parameters that enable and control the use of Power
Compiler clock gating. Click OK when you are done. For more information on clock gating
and other parameters for synthesis strategies, refer to “DC(TCL)_opto_strategy” in the
coreAssembler User Guide.

For FPGA synthesis, click the Options button and then select the FPGA Synthesis tab. It is
here where you specify the location of your FPGA device and speed grade, synthetic libraries
other than DesignWare Foundation libraries, implementation of DC-FPGA operators, and so
on. For more information about running synthesis for an FPGA device, refer to the
coreAssembler User Guide.

For Design for Test, click the Options button and then select the Design for Test tab. Here you
can specify whether to add the -scan option to the initial compile call (Test Read Compile)
and/or insert design for test circuitry (Insert Dft). For more information about include DFT in
your synthesis run, refer to the coreAssembler User Guide.

c. Choose the Options tab at the top of the configuration screen. Look at the values for the
parameters listed below.

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes the run.scr script, but it is not run when you click
Apply. To run the script, go to the workspace/syn directory and run the
script (run.scr) from the Unix command line.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally on the current
machine, through LSF, through GRD, or through the remote shell
command. Jobs can be executed on different machines, but must be run
on the same operating system as the current operating system.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local.
For remote, specify the hostname. For LSF and GRD, specify bsub or
qsub commands.

April 16, 2007 Synopsys, Inc. 33

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

d. If it is not already set, choose the “local” Run Style option and keep the other default settings.

e. Look through the Licenses and Reports tabs, and ensure that you have all the licenses that are
required to run this synthesis session.

f. Click Apply in the Synthesize Activity pane to start synthesis from coreAssembler. The
current status of the synthesis run is displayed in the main window. Click the Reload Page
button if you want to update the status in this screen.

10. Generate Test Vectors – This option allows you to generate ATPG test vectors with TetraMax
after you have used insert DFT during the Synthesis activity. For more information about this,
refer to “Generating Test Vectors” in the coreAssembler User Guide.

Checking Synthesis Status and Results
To check synthesis status and results, click the Report tab for the synthesis options; coreAssembler
displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your synthesis results
● The name of the host on which the synthesis is running
● The process ID (Job Id) of the synthesis
● The status of the synthesis job (running or done)

The Results dialog also enables you to kill the synthesis (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Summary of log files
● Synthesis stages that completed
● Summary of stage results

This information indicates whether the synthesis executed successfully, and lists the transactions that
occurred during the scenario(s). Thorough analysis of the scenario execution requires detailed analysis
of all synthesis log files and inspection of report summaries. For more information about
coreAssembler synthesis and synthesis stages, see the coreAssembler User Guide.

Parallel job CPU limit Values: user-defined; minimum value is 1
Default Value: 1
Description: Specifies number of parallel compile jobs that can be run.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Skip reading
$HOME/.synopsys_dc.setup

Values: Enable or Disable
Default Value: Disable
Description: Forces tools not to read .synopsys_dc.setup file from
$HOME.

Field Name Description

34 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

Synthesis Output Files
All the synthesis results and log files are created under the syn directory in your workspace. Two of the
files in the workspace/syn directory are:

● run.scr – Top-level synthesis script for the subsystem
● run.log – Synthesis log file

Your final netlist and report directories depend on the QoR effort that you chose for your synthesis
(default is medium):

● low – initial
● medium – incr1
● high – incr2

For more information about deliverables that are generated after synthesis is performed, refer to
“Database Description” on page 183.

Running Synthesis from Command Line
To run synthesis from the command line prompt for the files generated by coreAssembler, enter the
following command:

% run.scr

This script resides in your workspace/syn directory.

Create Component GTECH Simulation Model
DesignWare AMBA Synthesizable IP components are delivered in either:

● encrypted format (when using a DesignWare licensem which is provided with the DesignWare
Library product) or

● RTL source format (when using a DesignWare AMBA Synthesizable IP source license).

Note
The Synopsys VCS simulator reads the encrypted files directly and does not require a
GTECH conversion. All other supported simulators require a GTECH simulation model.
You need DesignWare and Design Compiler licenses to complete the GTECH generation
process. If you are a source license customer, then you do not have to generate a GTECH
simulation model, even if you are using a non-VCS simulator.

Also, it is not possible to perform a GTECH simulation with DC FPGA.

1. Create Component GTECH Simulation Model – To create a GTECH simulation model for the
DW_apb_i2c component, click on the Generate GTECH Model (for i_i2c) activity.

April 16, 2007 Synopsys, Inc. 35

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

2. Look at the values for the parameters listed below.

Note
For GTECH Simulations Only. Due to the configurable nature of the component, some
ports in the testbench may not be needed for your chosen configuration. Warnings about
undriven nets may appear. These warnings are to be expected, and you can ignore them.
The verification result files show if the verification ran successfully.

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the generation of the GTECH
simulation model, but they are not run when you click Apply. To run
these scripts, go to the workspace/components/DW_apb_i2c
instance/gtech directory and run the run.scr script from the Unix
command line.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locallyon the curent
machine, through lsf, through grd, or through the remote shell command.
Jobs can be executed on different machines, but must be run on the same
operating system as the current operating system.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style options other than local.
For remote, specify the hostname. For lsf and grd, specify bsub or qsub
command options.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Synthesis Control

Ungroup Netlist after Compile Values: Enable or Disable
Default Value: Disable
Description: Ungroups the design to provide a non-hierarchical netlist.

36 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

3. Click Apply. coreAssembler invokes Design Compiler to perform a low-effort compile
(quickmap) of your custom configuration using the Synopsys technology-independent GTECH
library. After this activity has completed, an e-mail similar to the following is sent to the specified
user name (if you enabled that option):

Activity: GenerateGtechModel
Workspace: workspace_path
Design: design_name
Started: Wed Jul 24 16:19:48 BST 2002
Finished: Wed Jul 24 16:21:42 BST 2002
Status: Completed
Results: workspace_path/components/i_i2c/gtech/gtech.log

Your simulation model is contained in the DW_apb_i2c.v output file that is written to
workspace/components/i_i2c/gtech/qmap/db.

Verify Component
The Verify Component activity in coreAssembler allows you to perform verification for an individual
component. For this exercise, you are just going to perform verification for the DW_apb_i2c; however,
you typically would also perform verification for other components in your subsystem.

To verify DW_apb_i2c, use coreAssembler to complete the following steps:

1. To run verification for the DW_apb_i2c component, click Specify and Run Simulations (for i_i2c)
in the Verify Component activity.

2. Choose the View list choice.

In the View Selection area of the View pane, look at the choice of views of the design you can
simulate from the drop-down list:

❍ RTL – requires a source license or Synopsys VCS

❍ GTECH – requires that you have completed the Generate GTECH Model activity (refer to
page 34) only if you are using a non-VCS simulator and do not have a source license.

3. In the VIP pane, click on the VMT and AMBA versions to see the available versions; leave these
in the default “latest” mode.

4. Specify the various options for the Simulator.

a. In the Select Simulator area, click on the Simulator list item to view available simulators
(VCS is the default).

b. Specify an appropriate Verilog simulator from the drop-down menu.

c. For installation instructions and information about required tools and versions, refer to
“Setting up Your Environment” in the DesignWare AMBA Synthesizable Components
Installation Guide. For general information about the contents of the release, refer to the
DesignWare DW_apb_i2c Release Notes.

Field Name Description

View Selection Values: user-defined
Default Value: RTL
Description: Determines which design view to simulate: RTL or GTECH.

April 16, 2007 Synopsys, Inc. 37

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

d. In the Simulator Setup area of the Simulator pane, look at the parameters for the simulator
setup, as detailed in the following table.

e. In the Waves Setup area of the Simulator pane, look at the parameters for the waves setup, as
detailed below.

For the Generate Waves File setting, enable the check box so that the simulation creates a
dump file that you can use later for debugging the simulation, if you want to do so.

Field Name Description

Root Directory of Cadence
Installation

The path to the top of the directory tree where the Cadence NC-Verilog
executable is found; coreConsultant automatically detects this path. The
NC-Verilog executables reside in the ./bin subdirectory.

MTI Include Path The path to the include directory contained within your MTI simulator
installation area. A valid directory includes the veriuser.h file.

Vera Install Area
($VERA_HOME)

Path to your Vera installation. This parameter defaults to the value of your
VERA_HOME environment variable. Changes to this value are propagated
as $VERA_HOME in any simulation run.

Vera .vro file cache
directory

Cache directory used by Vera to store .vro files, which are generated when
building the testbench. Encrypted Vera source is compiled and stored in the
cache.

DW Foundation install area
($SYNOPSYS)

Path to your $SYNOPSYS/dw installation. This parameter defaults to the
value of your SYNOPSYS environment variable. Any change to this value
must be made from the Tool Installation Areas coreConsultant dialog box.

C Compiler for (Vera PLI) Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI for your
chosen non-VCS simulator. Choose cc if you have the platform-native ANSI
C compiler installed. Choose gcc if you have the GNU C compiler installed.

Field Name Description

Generate waves file Values: Enable or Disabled
Default Value: Disabled
Description: Indicates whether a wave file should be created for debugging
with a wave file browser after simulation ends. Uses VPD file format for
VCS, and VCD format for the other supported simulators.

Depth of waves to be
recorded

Description: Enter the depth of the signal hierarchy for which to record
waves in the dump file. A depth of 0 indicates all signals in the hierarchy are
included in the wave file.

38 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

5. Choose the Execution Options list choice to set the following options:

6. Select Testbench and look at the options described below:

Field Name Description

Do Not Launch
Simulation

Values: Enable or Disable
Default Value: Disable
Description: Determines whether to execute the simulation or just generate the
simulation run script. If checked, coreConsultant generates, but does not execute,
the simulation run script. You can execute the script at a later time by directly
invoking the run script (workspace/sim/run.scr) from the UNIX command line or
by repeating the Verification activity with the Do Not Launch Simulation option
unselected.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, through lsf, through
grd, or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style other than local. For remote,
specify the hostname. For lsf and grd, specify bsub or qsub commands.

Send e-mail Values: current user’s name
Description: E-mail is sent to the specified user when the command script
completes or is terminated.

Field Name Description

Let each Test decide
default Timeout Period

Values: Enable or Disable
Default Value: Enable
Description: Allows the test to default the timeout period value.
Note: It it highly recommended that you leave this option enabled if you want
the simulation to complete normally.

Number of clocks before
simulation timeout

Minimum Value: 1
Default Value: 999999
Dependencies: This setting is activated when the “Let each Test decide
default Timeout Period” is unchecked.
Description: Enabled if default timeout period is disabled. Enter the number
of clock periods of simulation that, if passed, causes the simulation to fail.
This is used to avoid runaway simulations or to debug truncated simulation
runs. Note: If you experience a timeout during the simulation for your
specific configuration, you may need to increase this value.

APB Clock Ratio Values: 1-8 (currently only 1 is allowed)
Default Value: 1
Description: Specifies the ratio of the APB clock (also known as pclk or the
system clock).

Run test_i2c Values: Enable or Disable
Default Value: Enable
Description: Tests functionalities of DW_apb_i2c.

April 16, 2007 Synopsys, Inc. 39

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

7. Click Apply to run the simulation.

When you click Apply, coreAssembler performs the following actions:

❍ Sets up the DW_apb_i2c verification environment to match your selected DW_apb_i2c
configuration.

❍ Generates the simulation run script (run.scr) and writes it to your
workspace/components/i_i2c/sim directory.

❍ Invokes the simulation run script, unless you enabled the Do Not Launch Simulation option.

The simulation run script, in turn, performs the following actions:

❍ Links the generated command files, and recompiles the testbench.
❍ Invokes your simulator to simulate the specified scenarios.
❍ Writes the simulation output files to your workspace/components/i_i2c/sim/test_* directory.
❍ If an e-mail address is specified, sends the simulation completion information to that e-mail

address when the simulation is complete.

For an overview of the related tests, refer to Chapter 8, “Verification” on page 157.

Checking Simulation Status and Results
To check simulation status and results, click the Report tab for either the GTECH models or for the
simulation options; coreAssembler displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

If you selected the “LSF/GRD” option for the Run Style, then the status of the simulation jobs (running
or complete) is incorrect. Once all the simulation jobs are submitted to the LSF/GRD queue, the status
would indicate “complete.” You should use “bjobs/qstatus” to see whether all the jobs are completed.

The Results dialog also enables you to kill the simulation (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Vera compile execution messages
● Simulation execution messages
● DW_apb_i2c bus transactions

This information indicates whether the simulation executed successfully, and lists the DW_apb_i2c
transactions that occurred during the scenario(s).

Thorough analysis of the scenario execution requires detailed analysis of all simulation output files and
inspection of simulation waveforms with a waveform viewer.

Applying Default Verification Attributes
To reset all DW_apb_i2c verification attributes to their default values, use the Default button in the
Setup and Run Simulation activity under the Verification tab.

To examine default attribute values without resetting the attribute values in your current workspace,
create a new workspace; the new workspace has all the default attribute values. Alternatively, use the
Default button to reset the values, and then close your current workspace without saving it.

40 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

Verify the Subsystem
To verify the subsystem, use coreAssembler to complete the following activities.

Formal Verification
You can run formal verification scripts using Synopsys Formality (fm_shell) to check two designs for
functional equivalence. You can check the gate-level design from a selected phase of a previously
executed synthesis strategy against either the RTL version of the design or the gate-level design from
another stage of synthesis.

To run formal verification scripts:

● Choose Formal Verification under the Verify Component category and then click Apply.

Create Testbench
The Create Testbench activity allows you to create a separate verification workspace where you
simulate your subsystem. When you use DesignWare Library components, many of the steps can be
completed automatically. These steps include:

● Generate Subsystem RTL for the design subsystem

● Save and close the design subsystem workspace

● Open a new Testbench workspace

● Instantiate the DUT (from the subsystem design workspace)

● Instantiate Verification IP models for exported master and slave interfaces

● Attach Verification IP to device communication ports (GPIO, SSI, UART)

● Instantiate Verification monitors (optional) for each type of bus (AXI, AHB, APB) used

Prior to performing a simulation run, you can:

● Add or remove components in the testbench

● Add a clock tree and specify testbench clocking

● Change configuration information for the VIP components (not for the DUT)

● Make monitor connections (probes) to lower levels of hierarchy inside the DUT

To create the testbench:

1. Click on the “Create Testbench” activity in the Subsystem Activity list.

April 16, 2007 Synopsys, Inc. 41

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

A dialog gives you configuration options for how to set up the testbench workspace:

These options include:

2. Apply this activity using the defaults shown. The following automatically generated steps occur.

❍ Generates Subsystem RTL for the design subsystem DUT
❍ Saves and closes the design subsystem workspace
❍ Open a new Testbench workspace
❍ Instantiate the DUT (from the subsystem design workspace)
❍ Instantiates Verification IP models and connects to exported master and slave interfaces

When this activity completes, you should see the schematic view of your testbench in the new
“testbench” workspace, and the Add Testbench Components activity is highlighted.

3. A new menu item “Testbench” is now available after the “Help” menu. Choose the Add Monitors
item from this menu.

coreAssembler creates a hierarchical block with the appropriate Monitor VIP components
connected to the top-level interfaces and clocks.

4. Double click on the Hierarchical cell containing the Monitor(s). Note the connections that are
made from the monitor(s) to the top level.

Note: Monitors add overhead to any simulation. If they are not necessary, you will achieve higher
simulation performance without them.

5. Choose Schematic Menu > Exit Cell to return to the top-level schematic.

Table 6: Create Testbench Options

Option text string Type Comment

Testbench Workspace Name string Default: tb_<DUT_wksp_name>

Testbench Workspace Directory string Default: current working dir

Automatically Instantiate DesignWare VIP boolean Default: TRUE (checked)

Automatically Instantiate DesignWare VIP Monitors boolean Default: FALSE (unchecked)

Close DUT workspace boolean Default: TRUE (checked)

42 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

6. Click on the Simulate Subsystem activity in order to auto-complete configuring and generating
testbench HDL. Click “Yes” to auto-completing the remaining activities.

If you wanted to make configuration changes to the Verification components, you could step
through each of these activities individually. By using the auto-complete feature, coreAssembler
places default values for these activities, and proceeds to the selected activity.

When Simulate Subsystem is the current activity, the Simulate Subsystem dialog is presented with
three tab options:

7. Choose the Testbench Definition tab to determine which slaves you want to be tested by which
master.

If there were multiple masters, you choose the master that will test each slave or component. You
can also choose “Do Not Test” component entry to bypass testing of a component.

8. In the Execution Options tab, you can specify the following settings.

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the simulation, but they are not run when
you click Apply. To run these scripts, go to the testbench
workspace/sim/testbench/all directory of the testbench workspace and run the
run.scr script from the Unix command line.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally on the current
machine, through lsf, through grd, or through the remote shell command. Jobs
can be executed on different machines, but must be run on the same operating
system as the current operating system.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for run style options other than local. For
remote, specify the hostname. For lsf and grd, specify bsub or qsub command
options.

Send e-mail
To:

Values: enable or disable
Values: current user’s e-mail address
Description: E-mail is sent when the command script completes or is
terminated.

April 16, 2007 Synopsys, Inc. 43

DesignWare DW_apb_i2c Databook Building and Verifying a Subsystem

9. Click the Simulator Setup tab and look at the parameters for the simulator setup, as detailed in the
following table.

10. Click Apply to run the subsystem simulation.

Checking Subsystem Verification Status and Results
To check subsystem simulation status and results, click the Report tab. As for the component
simulation, coreAssembler displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

The Results information includes:

● How many tests passed out of selected tests
● Link to testbench
● Waveforms
● Coverage results
● Testbench topology
● coreAssembler design rules
● Log data
● Slave test status

Field Name Description

Simulator Values: VCS, MTI_Verilog, NC_Verilog
Default Value: VCS
Description: Choice of simulator to invoke for the testbench.

MTI Include Path The path to the include directory contained within your ModelSim simulator
installation area. A valid directory includes the veriuser.h file.

Root Directory of
Cadence Installation

The path to the top of the directory tree where the Cadence NC-Verilog
executable is found; coreAssembler automatically detects this path. The
NC-Verilog executables reside in the ./bin subdirectory.

Generate ‘waves’ file Values: Enable or Disable
Default Value: Enabled
Description: Indicates whether a wave file should be created for debugging
with a wave file browser after simulation ends. Uses VPD file format for
VCS, and VCD format for the other supported simulators.

C Compiler for (Vera PLI) Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI for your
chosen non-VCS simulator. Choose cc if you have the platform-native ANSI
C compiler installed. Choose gcc if you have the GNU C compiler installed.

44 Synopsys, Inc. April 16, 2007

Building and Verifying a Subsystem DesignWare DW_apb_i2c Databook

Create a Batch Script
It is recommended that you create a batch file that contains information about the workspace,
parameters, attributes, and so on.

1. To do this, choose the File > Write Batch Script menu item and enter a location (other than your
working directory or where your workspace resides) and name for the file. Use the browse button
to navigate to the directory where you want this file to reside.

2. Then look at the contents to familiarize yourself with the information that you can get from this
file. You can use the batch script to reproduce the workspace.

Note
When you use this file, it deletes your workspace before it recreates it. So all files will
become deleted. Make sure to save any files you want to keep to a different location.

To use this batch script to recreate your subsystem, perform the following:

1. Make sure to run the batch.tcl script from a directory other than where your workspace resides.
2. In the Console at the bottom of the coreAssembler GUI screen, enter the following:

% source batch.tcl

Or restart coreAssembler, specifying the batch script on the Unix command line, like this:

% coreAssembler -f batch.tcl

Export the Subsystem
You can export your subsystem for reuse by third parties by building a subsystem coreKit, or you can
create a subsystem template that exports your subsystem as a reconfigurable “box.” You need a
separate coreBuilder license for both of these activities. However, the scope of this tutorial does not
include exporting a coreKit. If you are interested in learning more about this, refer to the
coreAssembler User Guide.

April 16, 2007 Synopsys, Inc. 45

DesignWare DW_apb_i2c Databook Functional Description

3
Functional Description

This chapter describes the functional behavior of DW_apb_i2c in more detail. The topics included in
this chapter are:

● “Overview”
● “I2C Terminology” on page 47
● “I2C Protocols” on page 50
● “Multiple Master Arbitration” on page 54
● “Clock Synchronization” on page 55
● “Operation Modes” on page 56
● “IC_CLK Frequency Configuration” on page 63
● “DMA Controller Interface” on page 65
● “APB Interface” on page 74

Overview
The I2C bus is a two-wire serial interface, consisting of a serial data line (SDA) and a serial clock
(SCL). These wires carry information between the devices connected to the bus. Each device is
recognized by a unique address and can operate as either a “transmitter” or “receiver,” depending on
the function of the device. Devices can also be considered as masters or slaves when performing data
transfers. A master is a device that initiates a data transfer on the bus and generates the clock signals to
permit that transfer. At that time, any device addressed is considered a slave.

Note
The DW_apb_i2c must only be programmed to operate in either master OR slave mode
only. Operating as a master and slave simultaneously is not supported.

The DW_apb_i2c module can operate in standard mode (with data rates up to 100 Kb/s), fast mode
(with data rates up to 400 Kb/s), and high-speed mode (with data rates up to 3.4 Mb/s). The
DW_apb_i2c can communicate with devices only of these modes as long as they are attached to the
bus. Additionally, high-speed mode and fast mode devices are downward compatible. For instance,
high-speed mode devices can communicate with fast mode and standard mode devices in a mixed-
speed bus system; fast mode devices can communicate with standard mode devices in 0 to 100 Kb/s
I2C bus system. However, standard mode devices are not upward compatible and should not be
incorporated in a fast-mode I2C bus system as they cannot follow the higher transfer rate and
unpredictable states would occur.

46 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

An example of high-speed mode devices are LCD displays, high-bit count ADCs, and high capacity
EEPROMs. These devices typically need to transfer large amounts of data. Most maintenance and
control applications, the common use for the I²C bus, typically operate at 100 kHz (in standard and fast
modes).

Any DW_apb_i2c device can be attached to an I²C-bus and every device can talk with any master,
passing information back and forth. There needs to be at least one master (such as a microcontroller or
DSP) on the bus but there can be multiple masters, which require them to arbitrate for ownership.
Multiple masters and arbitration are explained later in this chapter.

Note
In an I2C environment with multiple masters, make sure the DW_apb_i2c is programmed
to operate only as a Slave.

The DW_apb_i2c is made up of an AMBA APB slave interface, an I2C interface, and FIFO logic to
maintain coherency between the two interfaces. A simplified block diagram of the component is
illustrated in Figure 5.

Figure 5: DW_apb_i2c Block Diagram

The following define the file names and functions of the blocks in Figure 5:

● AMBA Bus Interface Unit—DW_apb_i2c_biu.v—Takes the APB interface signals and translates
them into a common generic interface that allows the register file to be bus protocol-agnostic.

● Register File—DW_apb_i2c_regfile—Contains configuration registers and is the interface with
software.

● Slave State Machine—DW_apb_i2c_slvfsm—Follows the protocol for a slave and monitors bus
for address match.

DW_apb_i2c

Master State
Machine

Slave State
Machine

Register
File

AMBA Bus
Interface Unit

Clock
Generator

Rx
Shift

Tx
Shift

Rx
Filter

Toggle Synchronizer DMA Interface
Interrupt

Controller

RX
FIFO

TX
FIFO

April 16, 2007 Synopsys, Inc. 47

DesignWare DW_apb_i2c Databook Functional Description

● Master State Machine—DW_apb_i2c_mstfsm—Generates the I2C protocol for the master
transfers.

● Clock Generator—DW_apb_i2c_clk_gen.v—Calculates the required timing to do the following:

❍ Generate the SCL clock when configured as a master
❍ Check for bus idle
❍ Generate a START and a STOP
❍ Setup the data and hold the data

● Rx Shift—DW_apb_i2c_rx_shift—Takes data into the design and extracts it in byte format.

● Tx Shift—DW_apb_i2c_tx_shift—Presents data supplied by CPU for transfer on the I2C bus.

● Rx Filter—DW_apb_i2c_rx_filter—Detects the events in the bus; for example, start, stop and
arbitration lost.

● Toggle—DW_apb_i2c_toggle—Generates pulses on both sides and toggles to transfer signals
across clock domains.

● Synchronizer—DW_apb_i2c_sync—Transfers signals from one clock domain to another.

● DMA Interface—DW_apb_i2c_dma—Generates the handshaking signals to the central DMA
controller in order to automate the data transfer without CPU intervention.

● Interrupt Controller—DW_apb_i2c_intctl—Generates the raw interrupt and interrupt flags,
allowing them to be set and cleared.

● RX FIFO/TX FIFO—DW_apb_i2c_fifo—Holds the RX FIFO and TX FIFO register banks and
controllers, along with their status levels.

Note
The ic_clk frequency must be greater than or equal to the pclk frequency. This restriction
occurs because the configuration registers are programmed on pclk, and the peripheral
enable is the last bit to be programmed; it is then transferred to the other domain, which
validates the other bits.

I2C Terminology
The following terms are used throughout this manual and are defined as follows:

I2C Bus Terms
The following terms relate to how the role of the I2C device and how it interacts with other I2C devices
on the bus.

Transmitter – the device that sends data to the bus. A transmitter can either be a device that initiates
the data transmission to the bus (a master-transmitter) or responds to a request from the master to send
data to the bus (a slave-transmitter).

Receiver – the device that receives data from the bus. A receiver can either be a device that receives
data on its own request (a master-receiver) or in response to a request from the master (a
slave-receiver).

48 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Master -– the component that initializes a transfer (START command), generates the clock (SCL)
signal and terminates the transfer (STOP command). A master can be either a transmitter or a receiver.

Slave – the device addressed by the master. A slave can be either receiver or transmitter.

These concepts are illustrated in Figure 6 on page 48

Figure 6: Master/Slave and Transmitter/Receiver Relationships

Multi-master – the ability for more than one master to co-exist on the bus at the same time without
collision or data loss.

Arbitration – the predefined procedure that authorizes only one master at a time to take control of the
bus. For more information about this behavior, refer to “Multiple Master Arbitration” on page 54.

Synchronization – the predefined procedure that synchronizes the clock signals provided by two or
more masters. For more information about this feature, refer to “Clock Synchronization” on page 55.

SDA – data signal line (Serial DAta)

SCL – clock signal line (Serial CLock)

Bus Transfer Terms
The following terms are specific to data transfers that occur to/from the I2C bus.

START (RESTART) – data transfer begins with a START or RESTART condition. The level of the
SDA data line changes from high to low, while the SCL clock line remains high. When this occurs, the
bus becomes busy.

Note
START and RESTART conditions are functionally identical.

STOP – data transfer is terminated by a STOP condition. This occurs when the level on the SDA data
line passes from the low state to the high state, while the SCL clock line remains high. When the data
transfer has been terminated, the bus is free or idle once again. The bus stays busy if a RESTART is
generated instead of a STOP condition.

Transmitter

Receiver

Receiver

Transmitter

Master

Master

Slave

Slave

SDA

SCL

SDA

SCL

cn0326
Highlight

cn0326
Highlight

April 16, 2007 Synopsys, Inc. 49

DesignWare DW_apb_i2c Databook Functional Description

I2C Behavior
The DW_apb_i2c can be controlled via software to be either:

● The sole I2C master only, communicating with other I2C slaves; OR

● An I2C slave only, communicating with one more I2C masters.

The master is responsible for generating the clock and controlling the transfer of data. The slave is
responsible for either transmitting or receiving data to/from the master. The acknowledgement of data
is sent by the device that is receiving data, which can be either a master or a slave. As mentioned
previously, the I2C protocol also allows multiple masters to reside on the I2C bus and uses an
arbitration procedure to determine bus ownership.

Note
In a multi-master environment, the DW_apb_i2c should only be allowed to operate as a
Slave only.

Each slave has a unique address that is determined by the system designer. When a master wants to
communicate with a slave, the master transmits a START/RESTART condition that is then followed by
the slave’s address and a control bit (R/W) to determine if the master wants to transmit data or receive
data from the slave. The slave then sends an acknowledge (ACK) pulse after the address.

If the master (master-transmitter) is writing to the slave (slave-receiver), the receiver gets one byte of
data. This transaction continues until the master terminates the transmission with a STOP condition. If
the master is reading from a slave (master-receiver), the slave transmits (slave-transmitter) a byte of
data to the master, and the master then acknowledges the transaction with the ACK pulse. This
transaction continues until the master terminates the transmission by not acknowledging (NACK) the
transaction after the last byte is received, and then the master issues a STOP condition or addresses
another slave after issuing a RESTART condition. This behavior is illustrated in Figure 7.

Figure 7: Data transfer on the I2C Bus

The DW_apb_i2c is a synchronous serial interface. The SDA line is a bidirectional signal and changes
only while the SCL line is low, except for STOP, START, and RESTART conditions. The output drivers
are open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of
devices on the bus is limited by only the maximum capacitance specification of 400 pF. Data is
transmitted in byte packages.

The I2C protocols implemented in DW_apb_i2c are described in more details in the following section,
“I2C Protocols” on page 50.

MSB LSB ACKACK

1 2 7 8 9 1 2 3-8 9

from slave from receiver
SDA

SCL

P or R

START or
RESTART
Condition

STOP AND
RESTART
Condition

Byte Complete
Interrupt within
Slave

SCL held low
while servicing
interrupts

S
or
R

R or P

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

50 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

I2C Protocols
The DW_apb_i2c has the following protocols:

● “START and STOP Conditions”
● “Addressing Slave Protocol” on page 50
● “Transmitting and Receiving Protocol” on page 52
● “START BYTE Transfer Protocol” on page 53

START and STOP Conditions
When the bus is idle, both the SCL and SDA signals are pulled high through external pull-up resistors
on the bus. When the master wants to start a transmission on the bus, the master issues a START
condition. This is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the
master wants to terminate the transmission, the master issues a STOP condition. This is defined to be a
low-to-high transition of the SDA line while SCL is 1. Figure 8 shows the timing of the START and
STOP conditions. When data is being transmitted on the bus, the SDA line must be stable when
SCL is 1.

Figure 8: START and STOP Condition

Note
The signal transitions for the START/STOP conditions, as depicted in Figure 8, reflect
those observed at the output signals of the Master driving the I2C bus. Care should be
taken when observing the SDA/SCL signals at the input signals of the Slave(s), because
unequal line delays may result in an incorrect SDA/SCL timing relationship.

Addressing Slave Protocol
There are two address formats: the 7-bit address format and the 10-bit address format.

7-bit Address Format
During the 7-bit address format, the first seven bits (bits 7:1) of the first byte set the slave address and
the LSB bit (bit 0) is the R/W bit as shown in Figure 9. When bit 0 (R/W) is set to 0, the master writes
to the slave. When bit 0 (R/W) is set to 1, the master reads from the slave.

SDA

SCL
PS

Start Condition
Change of Data

Allowed
Change of Data

Allowed Stop Condition
Data line Stable

Data Valid

April 16, 2007 Synopsys, Inc. 51

DesignWare DW_apb_i2c Databook Functional Description

Figure 9: 7-bit Address Format

10-bit Address Format
During 10-bit addressing, two bytes are transferred to set the 10-bit address. The transfer of the first
byte contains the following bit definition. The first five bits (bits 7:3) notify the slaves that this is a
10-bit transfer followed by the next two bits (bits 2:1), which set the slaves address bits 9:8, and the
LSB bit (bit 0) is the R/W bit. The second byte transferred sets bits 7:0 of the slave address. Figure 10
shows the 10-bit address format, and Table 7 on page 51 defines the special purpose and reserved first
byte addresses.

Figure 10: 10-bit Address Format
v

Table 7: I2C Definition of Bits in First Byte

Slave Address R/W Bit Description

0000 000 0 General Call Address. DW_apb_i2c places the data in the receive buffer and issues a
General Call interrupt.

0000 000 1 START byte. For more details, refer to “START BYTE Transfer Protocol” on page 53.

0000 001 X CBUS address. DW_apb_i2c ignores these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed master code (for more information, refer to “Multiple Master Arbitration”
on page 54).

1111 1XX X Reserved.

1111 0XX X 10-bit slave addressing.

S A6 A5 A4 A3 A2 A1 A0 R/W ACK

Slave Address
sent by slave

S = START condition R/W = Read/Write PulseACK = Acknowledge

MSB LSB

S A6 A5 A4 A3 A2 A1 A0R/W ACK

Reserved for 10-bit sent by slave

S = START condition

R/W = Read/Write Pulse

ACK = Acknowledge

A7ACKA9‘1’ ‘1’ ‘1’ ‘1’ ‘0’ A8

Address

sent by slave

52 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Attention
DW_apb_i2c does not restrict you from using these reserved addresses. However, if you
use these reserved addresses, you may run into incompatibilities with other I2C
components.

Transmitting and Receiving Protocol
The master can initiate data transmission and reception to/from the bus, acting as either a
master-transmitter or master-receiver. A slave responds to requests from the master to either transmit
data or receive data to/from the bus, acting as either a slave-transmitter or slave-receiver, respectively.

Master-Transmitter and Slave-Receiver
All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer.
After the master sends the address and R/W bit or the master transmits a byte of data to the slave, the
slave-receiver must respond with the acknowledge signal (ACK). When a slave-receiver does not
respond with an ACK pulse, the master aborts the transfer by issuing a STOP condition. The slave must
leave the SDA line high so that the master can abort the transfer.

If the master-transmitter is transmitting data as shown in Figure 11, then the slave-receiver responds to
the master-transmitter with an acknowledge pulse after every byte of data is received.

Figure 11: Master-Transmitter Protocol

Master-Receiver and Slave-Transmitter
If the master is receiving data as shown in Figure 12 on page 53, then the master responds to the
slave-transmitter with an acknowledge pulse after a byte of data has been received, except for the last
byte. This is the way the master-receiver notifies the slave-transmitter that this is the last byte. The
slave-transmitter relinquishes the SDA line after detecting the No Acknowledge (NACK) so that the
master can issue a STOP condition.

When a master does not want to relinquish the bus with a STOP condition, the master can issue a
RESTART condition. This is identical to a START condition except it occurs after the ACK pulse. The
master can then communicate with the same slave or a different slave.

S A/A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S A/A PR/W

For 10-bit Address

ASlave Address

‘0’ (write)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition
P = STOP Condition

‘0’ (write)‘11110xxx’

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

cn0326
Highlight

April 16, 2007 Synopsys, Inc. 53

DesignWare DW_apb_i2c Databook Functional Description

Figure 12: Master-Receiver Protocol

START BYTE Transfer Protocol
The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated I2C
hardware module. When the DW_apb_i2c is addressed as a slave, it always samples the I2C bus at the
highest speed supported so that it never requires a START BYTE transfer. However, when
DW_apb_i2c is a master, it supports the generation of START BYTE transfers at the beginning of
every transfer in case a slave device requires it. This protocol consists of seven zeros being transmitted
followed by a 1, as illustrated in Figure 13. This allows the processor that is polling the bus to
under-sample the address phase until 0 is detected. Once the microcontroller detects a 0, it switches
from the under sampling rate to the correct rate of the master.

Figure 13: START BYTE Transfer

The START BYTE procedure is as follows:

1. Master generates a START condition.
2. Master transmits the START byte (0000 0001).
3. Master transmits the ACK clock pulse. (Present only to conform with the byte handling format

used on the bus)
4. No slave sets the ACK signal to 0.
5. Master generates a RESTART (R) condition.

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets
after the RESTART condition is generated.

S A PR/W

For 7-bit Address

A DATASlave Address A DATA

‘0’ (write)
S R/W

For 10-bit Address

ASlave Address

‘1’ (read)

First 7 bits
Slave Address
Second Byte

A DATA

From Master to Slave

From Slave to Master

A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = START Condition

P = STOP Condition

Sr Slave Address
First 7 bits

R/W A A P

R = RESTART Condition

‘0’ (write) ‘1’ (read)‘11110xxx’ ‘11110xxx’

SDA

SCL

SrS

start byte 00000001

dummy
acknowledge

1 2 7 8 9

(HIGH)

ACK

54 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Multiple Master Arbitration
Note
In a multiple master I2C bus system, the DW_apb_i2c should not be programmed as a
master device. For multiple master systems, the DW_apb_i2c can only be operated as a
slave (set IC_CON.MASTER_MODE to 0 (master disabled).

The DW_apb_i2c bus protocol allows multiple masters to reside on the same bus. If there are two
masters on the same I²C-bus, there is an arbitration procedure if both try to take control of the bus at the
same time by generating a START condition at the same time. Once a master (for example, a
microcontroller) has control of the bus, no other master can take control until the first master sends a
STOP condition and places the bus in an idle state.

Arbitration takes place on the SDA line, while the SCL line is 1. The master, which transmits a 1 while
the other master transmits 0, loses arbitration and turns off its data output stage. The master that lost
arbitration can continue to generate clocks until the end of the byte transfer. If both masters are
addressing the same slave device, the arbitration could go into the data phase. Figure 14 on page 54
illustrates the timing of when two masters are arbitrating on the bus.

Figure 14: Multiple Master Arbitration

SDA lines up
with DATA1
START condition

SDA

SCL

MSB

MSB

MSB

matching data

DATA1

DATA2

DATA1 loses arbitration

‘1’

‘0’

SDA mirrors DATA2

cn0326
Highlight

cn0326
Highlight

April 16, 2007 Synopsys, Inc. 55

DesignWare DW_apb_i2c Databook Functional Description

For high-speed mode, the arbitration cannot go into the data phase because each master is programmed
with a unique high-speed master code. This 8-bitcode is defined by the system designer and is set by
writing to the High Speed Master Mode Code Address Register, IC_HS_MADDR. Because the codes
are unique, only one master can win arbitration, which occurs by the end of the transmission of the
high-speed master code.

Control of the bus is determined by address or master code and data sent by competing masters, so
there is no central master nor any order of priority on the bus.

Arbitration is not allowed between the following conditions:

● A RESTART condition and a data bit
● A STOP condition and a data bit
● A RESTART condition and a STOP condition

Slaves are not involved in the arbitration process.

Clock Synchronization
When two or more masters try to transfer information on the bus at the same time, they must arbitrate
and synchronize the SCL clock. All masters generate their own clock to transfer messages. Data is
valid only during the high period of SCL clock. Clock synchronization is performed using the
wired-AND connection to the SCL signal. When the master transitions the SCL clock to 0, the master
starts counting the low time of the SCL clock and transitions the SCL clock signal to 1 at the beginning
of the next clock period. However, if another master is holding the SCL line to 0, then the master goes
into a HIGH wait state until the SCL clock line transitions to 1.

All masters then count off their high time, and the master with the shortest high time transitions the
SCL line to 0. The masters then counts out their low time and the one with the longest low time forces
the other master into a HIGH wait state. Therefore, a synchronized SCL clock is generated, which is
illustrated in Figure 15. Optionally, slaves may hold the SCL line low to slow down the timing on the
I2C bus.

Figure 15: Multi-Master Clock Synchronization

Wait State

Start counting HIGH period

CLKA

CLKB

SCL

SCL LOW transition
Resets all CLKs to start
counting their LOW periods

SCL transitions HIGH
when all CLKs are in HIGH state

56 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Operation Modes
This section provides information on the following topics:

● “Slave Mode Operation”
● “Master Mode Operation” on page 60
● “Disabling DW_apb_i2c” on page 62

Note
It is important to note that the DW_apb_i2c should only be set to operate as an I2C Master,
or I2C Slave, but not both simultaneously. This is achieved by ensuring that bit 6
(IC_SLAVE_DISABLE) and 0 (IC_MASTER_MODE) of the IC_CON register are never
set to 0 and 1, respectively.

Slave Mode Operation
This section includes the following procedures:

● “Initial Configuration”
● “Slave-Transmitter Operation for a Single Byte” on page 57
● “Slave-Receiver Operation for a Single Byte” on page 58
● “Slave-Transfer Operation For Buik Transfers” on page 58

Initial Configuration
To use the DW_apb_i2c as a slave, perform the following steps:

1. Disable the DW_apb_i2c by writing a ‘0’ to bit 0 of the IC_ENABLE register.

2. Write to the IC_SAR register (bits 9:0) to set the slave address. This is the address to which the
DW_apb_i2c responds.

3. Write to the IC_CON register to specify which type of addressing is supported (7- or 10-bit by
setting bit 3). Enable the DW_apb_i2c in slave-only mode by writing a ‘0’ into bit 6
(IC_SLAVE_DISABLE) and a ‘0’ to bit 0 (MASTER_MODE).

Note
Slaves and masters do not have to be programmed with the same type of addressing 7- or
10-bit address. For instance, a slave can be programmed with 7-bit addressing and a
master with 10-bit addressing, and vice versa.

4. Enable the DW_apb_i2c by writing a ‘1’ in bit 0 of the IC_ENABLE register.

Note
Depending on the reset values chosen, steps 2 and 3 may not be necessary because the
reset values can be configured. For instance, if the device is only going to be a master,
there would be no need to set the slave address because you can configure DW_apb_i2c to
have the slave disabled after reset and to enable the master after reset. The values stored
are static and do not need to be reprogrammed if the DW_apb_i2c is disabled.

April 16, 2007 Synopsys, Inc. 57

DesignWare DW_apb_i2c Databook Functional Description

Slave-Transmitter Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and requests data, the
DW_apb_i2c acts as a slave-transmitter and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the slave address
in the IC_SAR register of the DW_apb_i2c.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that it is acting as a slave-transmitter.

3. The DW_apb_i2c asserts the RD_REQ interrupt (bit 5 of the IC_RAW_INTR_STAT register) and
holds the SCL line low. It is in a wait state until software responds.

If the RD_REQ interrupt has been masked, due to IC_INTR_MASK[5] register (M_RD_REQ bit
field) being set to 0, then it is recommended that a hardware and/or software timing routine be
used to instruct the CPU to perform periodic reads of the IC_RAW_INTR_STAT register.

a. Reads that indicate IC_RAW_INTR_STAT[5] (R_RD_REQ bit field) being set to 1 must be
treated as the equivalent of the RD_REQ interrupt being asserted.

b. Software must then act to satisfy the I2C transfer.

c. The timing interval used should be in the order of 10 times the fastest SCL clock period the
DW_apb_i2c can handle. For example, for 400 kb/s, the timing interval is 25us.

Note
The value of 10 is recommended here because this is approximately the amount of time
required for a single byte of data transferred on the I2C bus.

4. If there is any data remaining in the TX FIFO before receiving the read request, then the
DW_apb_i2c asserts a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register) to flush
the old data from the TX FIFO.

Note
Because the DW_apb_i2c’s TX FIFO is forced into a flushed/reset state whenever a
TX_ABRT event occurs, it is necessary for software to release the DW_apb_i2c from this
state by reading the IC_CLR_TX_ABRT register before attempting to write into the TX
FIFO. See register IC_RAW_INTR_STAT for more details.

If the TX_ABRT interrupt has been masked, due to of IC_INTR_MASK[6] register
(M_TX_ABRT bit field) being set to 0, then it is recommended that re-using the timing routine
(described in the previous step), or a similar one, be used to read the IC_RAW_INTR_STAT
register.

a. Reads that indicate bit 6 (R_TX_ABRT) being set to 1 must be treated as the equivalent of the
TX_ABRT interrupt being asserted.

b. There is no further action required from software.

c. The timing interval used should be similar to that described in the previous step for the
IC_RAW_INTR_STAT[5] register.

5. Software writes to the IC_DATA_CMD register with the data to be written (by writing a ‘0’ in bit
8).

58 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

6. Software must clear the RD_REQ and TX_ABRT interrupts (bits 5 and 6, respectively) of the
IC_RAW_INTR_STAT register before proceeding.

If the RD_REQ and/or TX_ABRT interrupts have been masked, then clearing of the
IC_RAW_INTR_STAT register will have already been performed when either the R_RD_REQ or
R_TX_ABRT bit has been read as 1.

7. The DW_apb_i2c releases the SCL and transmits the byte.

8. The master may hold the I2C bus by issuing a RESTART condition or release the bus by issuing a
STOP condition.

Slave-Receiver Operation for a Single Byte

When another I2C master device on the bus addresses the DW_apb_i2c and is sending data, the
DW_apb_i2c acts as a slave-receiver and the following steps occur:

1. The other I2C master device initiates an I2C transfer with an address that matches the
DW_apb_i2c’s slave address in the IC_SAR register.

2. The DW_apb_i2c acknowledges the sent address and recognizes the direction of the transfer to
indicate that the DW_apb_i2c is acting as a slave-receiver.

3. DW_apb_i2c receives the transmitted byte and places it in the receive buffer.

Note
If the RX FIFO is completely filled with data when a byte is pushed, then an overflow
occurs and the DW_apb_i2c continues with subsequent I2C transfers. Because a NACK is
not generated, software must recognize the overflow when indicated by the DW_apb_i2c
(by the R_RX_OVER bit in the IC_INTR_STAT register) and take appropriate actions to
recover from lost data. Hence, there is a real time constraint on software to service the RX
FIFO before the latter overflow as there is no way to re-apply pressure to the remote
transmitting master. You must select a deep enough RX FIFO depth to satisfy the interrupt
service interval of their system.

4. DW_apb_i2c asserts the RX_FULL interrupt (IC_RAW_INTR_STAT[2] register).

If the RX_FULL interrupt has been masked, due to setting IC_INTR_MASK[2] register to 0 or
setting IC_TX_TL to a value larger than 0, then it is recommended that a timing routine (described
in “Slave-Transmitter Operation for a Single Byte” on page 57) be implemented for periodic reads
of the “IC_STATUS” on page 137 register. Reads of the IC_STATUS register, with bit 3 (RFNE)
set at 1, must then be treated by software as the equivalent of the RX_FULL interrupt being
asserted.

5. Software may read the byte from the IC_DATA_CMD register (bits 7:0).

6. The other master device may hold the I2C bus by issuing a RESTART condition or release the bus
by issuing a STOP condition.

Slave-Transfer Operation For Buik Transfers

In the standard I2C protocol, all transactions are single byte transactions and the programmer responds
to a remote master read request by writing one byte into the slave’s TX FIFO. When a slave
(slave-transmitter) is issued with a read request (RD_REQ) from the remote master (master-receiver),
at a minimum there should be at least one entry placed into the slave-transmitter’s TX FIFO.

April 16, 2007 Synopsys, Inc. 59

DesignWare DW_apb_i2c Databook Functional Description

DW_apb_i2c is designed to handle more data in the TX FIFO so that subsequent read requests can take
that data without raising an interrupt to get more data. Ultimately, this eliminates the possibility of
significant latencies being incurred between raising the interrupt for data each time had there been a
restriction of having only one entry placed in the TX FIFO.

This mode only occurs when DW_apb_i2c is acting as a slave-transmitter. If the remote master
acknowledges the data sent by the slave-transmitter and there is no data in the slave’s TX FIFO, the
DW_apb_i2c holds the I2C SCL line low while it raises the read request interrupt (RD_REQ) and waits
for data to be written into the TX FIFO before it can be sent to the remote master.

If the RD_REQ interrupt is masked, due to bit 5 (M_RD_REQ) of the IC_INTR_STAT register being
set to 0, then it is recommended that a timing routine be used to activate periodic reads of the
IC_RAW_INTR_STAT register. Reads of IC_RAW_INTR_STAT that return bit 5 (R_RD_REQ) set to
1 must be treated as the equivalent of the RD_REQ interrupt referred to in this section. This timing
routine is similar to that described in “Slave-Transmitter Operation for a Single Byte” on page 57.

The RD_REQ interrupt is raised upon a read request, and like interrupts, must be cleared when exiting
the interrupt service handling routine (ISR). The ISR allows you to either write 1 byte or more than 1
byte into the TX FIFO. During the transmission of these bytes to the master, if the master
acknowledges the last byte. then the slave must raise the RD_REQ again because the master is
requesting for more data.

If the programmer knows in advance that the remote master is requesting a packet of n bytes, then
when another master addresses DW_apb_i2c and requests data, the TX FIFO could be written with n
number bytes and the remote master receives it as a continuous stream of data. For example, the
DW_apb_i2c slave continues to send data to the remote master as long as the remote master is
acknowledging the data sent and there is data available in the TX FIFO. There is no need to hold the
SCL line low or to issue RD_REQ again.

If the remote master is to receive n bytes from the DW_apb_i2c but the programmer wrote a number of
bytes larger than n to the TX FIFO, then when the slave finishes sending the requested n bytes, it clears
the TX FIFO and ignores any excess bytes.

The the DW_apb_i2c generates a transmit abort (TX_ABRT) event to indicate the clearing of the TX
FIFO in this example. At the time an ACK/NACK is expected, if a NACK is received, then the remote
master has all the data it wants. At this time, a flag is raised within the slave’s state machine to clear the
leftover data in the TX FIFO. This flag is transferred to the processor bus clock domain where the
FIFO exists and the contents of the TX FIFO is cleared at that time.

60 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Master Mode Operation
This section includes the following topics:

● “Initial Configuration”
● “Dynamic IC_TAR or IC_10BITADDR_MASTER Update” on page 61
● “Master Transmit and Master Receive” on page 62

Initial Configuration
The initial configuration procedure for Master Mode Operation depends on the configuration
parameter I2C_DYNAMIC_TAR_UPDATE. When set to “Yes” (1), the target address and address
format can be changed dynamically without having to disable DW_apb_i2c. This parameter only
applies to when DW_apb_i2c is acting as a master because the slave requires the component to be
disabled before any changes can be made to the address. For more information about this parameter,
see page 83. For more information about how this parameter affects the IC_TAR register, see page 100.

The procedures are very similar and are only different with regard to where the
IC_10BITADDR_MASTER bit is set (either bit 4 of IC_CON register or bit 12 of IC_TAR register).

I2C_DYNAMIC_TAR_UPDATE = 0

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration
parameter is set to “No” (0), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported (bits 2:1) and the desired
speed of the DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing (bit 4).
Ensure that bit 6 (IC_SLAVE_DISABLE) is written with a ‘1’ and bit 0 (MASTER_MODE) is
written with a ‘1’.

Note
Slaves and masters do not have to be programmed with the same type of addressing 7- or
10-bit address. For instance, a slave can be programmed with 7-bit addressing and a
master with 10-bit addressing, and vice versa.

3. Write to the IC_TAR register the address of the I2C device to be addressed (bits 9:0). This register
also indicates whether a General Call or a START BYTE command is going to be performed by
I2C.

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired
master code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a ‘1’ in bit 0 of the IC_ENABLE register.

6. Now write transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is disabled.

This step generates the START condition and the address byte on the DW_apb_i2c. Once
DW_apb_i2c is enabled and there is data in the TX FIFO, DW_apb_i2c starts reading the data.

April 16, 2007 Synopsys, Inc. 61

DesignWare DW_apb_i2c Databook Functional Description

Note
Depending on the reset values chosen, steps 2, 3, 4, and 5 may not be necessary because
the reset values can be configured. The values stored are static and do not need to be
reprogrammed if the DW_apb_i2c is disabled, with the exception of the transfer direction
and data.

I2C_DYNAMIC_TAR_UPDATE = 1

To use the DW_apb_i2c as a master when the I2C_DYNAMIC_TAR_UPDATE configuration
parameter is set to “Yes” (1), perform the following steps:

1. Disable the DW_apb_i2c by writing 0 to the IC_ENABLE register.

2. Write to the IC_CON register to set the maximum speed mode supported for slave operation (bits
2:1) and to specify whether the DW_apb_i2c starts its transfers in 7/10 bit addressing mode when
the device is a slave (bit 3).

3. Write to the IC_TAR register the address of the I2C device to be addressed. It also indicates
whether a General Call or a START BYTE command is going to be performed by I2C. The desired
speed of the DW_apb_i2c master-initiated transfers, either 7-bit or 10-bit addressing, is controlled
by the IC_10BITADDR_MASTER bit field (bit 12).

4. Only applicable for high-speed mode transfers. Write to the IC_HS_MADDR register the desired
master code for the DW_apb_i2c. The master code is programmer-defined.

5. Enable the DW_apb_i2c by writing a 1 in the IC_ENABLE register.

6. Now write the transfer direction and data to be sent to the IC_DATA_CMD register. If the
IC_DATA_CMD register is written before the DW_apb_i2c is enabled, the data and commands are
lost as the buffers are kept cleared when DW_apb_i2c is not enabled.

Note
For multiple I2C transfers, perform additional writes to the TX FIFO such that the TX
FIFO does not become empty during the I2C transaction. If the TX FIFO is completely
emptied at any stage, then further writes to the TX FIFO results in an independent I2C
transaction.

Dynamic IC_TAR or IC_10BITADDR_MASTER Update
The DW_apb_i2c supports dynamic updating of the IC_TAR (bits 9:0) and
IC_10BITADDR_MASTER (bit 12) bit fields of the IC_TAR register. In order to perform a dynamic
update of the IC_TAR register, the I2C_DYNAMIC_TAR_UPDATE configuration parameter must be
set to “Yes” (1). You can dynamically write to the IC_TAR register provided the following conditions
are met:

1. DW_apb_i2c is not enabled (IC_ENABLE=0);

OR

2. DW_apb_i2c is enabled (IC_ENABLE=1); AND
DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the TX FIFO (IC_STATUS[2]=1)

62 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Master Transmit and Master Receive
The DW_apb_i2c supports switching back and forth between reading and writing dynamically. To
transmit data, write the data to be written to the lower byte of the I2C Rx/Tx Data Buffer and Command
Register (IC_DATA_CMD). The CMD bit [8] should be written to 0 for I2C write operations.
Subsequently, a read command may be issued by writing “don’t cares” to the lower byte of the
IC_DATA_CMD register, and a 1 should be written to the CMD bit.

Disabling DW_apb_i2c
The register IC_ENABLE_STATUS is added to allow software to unambiguously determine when the
hardware has completely shutdown in response to the IC_ENABLE register being set from 1 to 0. Only
one register is required to be monitored, as opposed to monitoring two registers (IC_STATUS and
IC_RAW_INTR_STAT) which is a requirement for DW_apb_i2c versions 1.05a or earlier.

Procedure

1. Define a timer interval (ti2c_poll) equal to the 10 times the signaling period for the highest I2C
transfer speed used in the system and supported by DW_apb_i2c. For example, if the highest I2C
transfer mode is 400 kb/s, then this ti2c_poll is 25us.

2. Define a maximum time-out parameter, MAX_T_POLL_COUNT, such that if any repeated
polling operation exceeds this maximum value, an error is reported.

3. Execute a blocking thread/process/function that prevents any further I2C master transactions to be
started by software, but allows any pending transfers to be completed.

Note
This step can be ignored if DW_apb_i2c is programmed to operate as an I2C slave only.

4. The variable POLL_COUNT is initialized to zero.

5. Set IC_ENABLE to 0.

6. Read the IC_ENABLE_STATUS register and test the IC_EN bit (bit 0). Increment
POLL_COUNT by one. If POLL_COUNT >= MAX_T_POLL_COUNT, exit with the relevant
error code.

7. If IC_ENABLE_STATUS[0] is 1, then sleep for ti2c_poll and proceed to the previous step.
Otherwise, exit with a relevant success code.

April 16, 2007 Synopsys, Inc. 63

DesignWare DW_apb_i2c Databook Functional Description

IC_CLK Frequency Configuration
When the DW_apb_i2c is configured as a master, the *CNT registers must be set before any I2C bus
transaction can take place to ensure proper I/O timing. The *CNT registers are:

● IC_SS_SCL_HCNT
● IC_SS_SCL_LCNT
● IC_FS_SCL_HCNT
● IC_FS_SCL_LCNT
● IC_HS_SCL_HCNT
● IC_HS_SCL_LCNT

Note
It is not necessary to program any of the *CNT registers if DW_apb_i2c is enabled to
operate only as an I2C slave, because these registers are only used to determine the SCL
timing requirements for operation as an I2C master.

Setting the *_LCNT registers configures the number of ic_clk signals that are required for setting the
low time of the SCL clock in each speed mode. Setting the *_HCNT* registers configures the number
of ic_clk signals that are required for setting the high time of the SCL clock in each speed mode.
Setting the registers to the correct value is described as follows.

The equation to calculate the proper number of ic_clk signals required for setting the proper SCL
clocks high and low times is as follows:

IC_xCNT = (ROUNDUP(MIN_SCL_xxxtime*OSCFREQ,0))
ROUNDUP is an explicit Excel function call that is used to convert a real number to

its equivalent integer number.
MIN_SCL_HIGHtime = Minimum High Period
MIN_SCL_HIGHtime = 4000 ns for 100 kbps

600 ns for 400 kbps
60 ns for 3.4 Mbs, bus loading = 100pF
160 ns for 3.4 Mbs, bus loading = 400pF

MIN_SCL_LOWtime = Minimum Low Period
MIN_SCL_LOWtime = 4700 ns for 100 kbps

1300 ns for 400 kbps
120 ns for 3.4Mbs, bus loading = 100pF
320 ns for 3.4Mbs, bus loading = 400pF

OSCFREQ = ic_clk Clock Frequency (Hz).

For example:
OSCFREQ = 100 MHz
I2Cmode = fast, 400 kbit/s
MIN_SCL_HIGHtime = 600 ns.
MIN_SCL_LOWtime = 1300 ns.

IC_xCNT = (ROUNDUP(MIN_SCL_HIGH_LOWtime*OSCFREQ,0))

IC_HCNT = (ROUNDUP(600 ns * 100 MHz,0))
IC_HCNTSCL PERIOD = 60
IC_LCNT = (ROUNDUP(1300 ns * 100 MHz,0))
IC_LCNTSCL PERIOD = 130
Actual MIN_SCL_HIGHtime = 60*(1/100 MHz) = 600 ns
Actual MIN_SCL_LOWtime = 130*(1/100 MHz) = 1300 ns

64 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

When the DW_apb_i2c operates as an I2C Master, in both transmit and receive transfers, the minimum
value that can be programmed in the *_LCNT registers is 8. Likewise, the minimum value allowed for
the *_HCNT registers is 6.

Note
The actual SCL low and high times are larger than the values written into the *_LCNT and
*_HCNT registers, respectively. One additional ic_clk period for the SCL low time is
added by the DW_apb_i2c, while eight additional ic_clk periods for the SCL high time is
added. Alternatively, you can subtract 1 from the calculated low count and 8 from the
calculated high count and use the resulting values for programming into the *_LCNT and
*_HCNT registers in order to account for this behavior.

The following points explain why this behavior occurs:

● The counting logic for the SCL low and high times actually uses (*_LCNT+1) and (*_HCNT+1)
values.

● Both the SDA and SCL signals are monitored for contentions, which may result in loss of
arbitration during Master transfer operations, as well as ensuring that the SCL high count is started
correctly. Since these signals can be asynchronous to ic_clk, digital filtering is applied to both
SDA and SCL lines.

● The digital filtering applied to the SCL line incurs a delay of four ic_clk cycles. This filtering
includes metastability removal and a 2-out-of-3 majority vote processing on SDA and SCL
transitions (edges).

● Whenever SCL is driven “1” to “0” by the DW_apb_i2c—that is, completing the SCL high time—
an internal logic latency of three ic_clk cycles is incurred.

Consequently, the minimum SCL low time, which the DW_apb_i2c is capable of, is 9 ic_clk periods—
(8+1) ic_clk periods—while the minimum SCL high time is 14 ic_clk periods—(6+1+4+3) ic_clk
periods.

At standard mode (100 kb/s), the required SCL frequency is 100kHz. The corresponding period is
10 μs, to be counted with 23 ic_clks—(9+14) ic_clks. This gives an initial estimate for the ic_clk
frequency of 2.3 MHz [1.0/(10e-6/23)].

This selection results in SCL low and high times of 3.91 μs—(9/2.3e6) μs—and 6.09 ns—(14/23e6) ns.
It should be noted that the SCL low time does not meet I2C specification requirements. The following
table shows various frequency selections for the ic_clk and the corresponding SCL low/high settings
and times.

ic_clkfreq
(MHz)

SCL Low
Count

SCL Low
Time (μs)

SCL High
Count

SCL High
Time (μs) Remarks

2.3 9 3.91 14 6.1 SCL low does not meet

2.4 11 4.6 13 — SCL high count invalid

2.4 12 5.0 12 — SCL high count invalid

2.5 11 4.4 14 5.6 SCL low time does not meet

2.6 11 4.2 15 5.7 SCL low time does not meet

2.6 12 4.6 14 5.8 SCL low time almost meets

April 16, 2007 Synopsys, Inc. 65

DesignWare DW_apb_i2c Databook Functional Description

As you can see in the table, the DW_apb_i2c can meet I2C standard mode transfers using an ic_clk
frequency of 2.7 MHz. All the above calculations can be automated by using a spreadsheet or a
C program.

Note
Using the above selected SCL low and high counts, the registers IC_SS_SCL_LCNT and
IC_SS_SCL_HCNT, should be programmed with the values 12 and 6—that is, (13-1) and
(14-8)—respectively.

At fast mode (400 kb/s), the lowest ic_clk frequency is 12 MHz, with SCL low and high counts of 16
and 14 respectively.

For high speed modes, transfer rates of 3.4 MB/s and 1.7 MB/s require the lowest ic_clk frequencies of
105.4 MHz and 56 MHz, respectively. The required corresponding SCL low/high counts are 15/14 and
19/14.

DMA Controller Interface
The DW_apb_i2c has an optional built-in DMA capability that can be selected at configuration time; it
has a handshaking interface to a DMA Controller to request and control transfers. The APB bus is used
to perform the data transfer to or from the DMA. While the DW_apb_i2c DMA operation is designed
in a generic way to fit any DMA controller as easily as possible, it is designed to work seamlessly, and
best used, with the DesignWare DMA Controller, the DW_ahb_dmac. The settings of the
DW_ahb_dmac that are relevant to the operation of the DW_apb_i2c are discussed here, mainly bit
fields in the DW_ahb_dmac channel control register, CTLx, where x is the channel number.

Note
When the DW_apb_i2c interfaces to the DW_ahb_dmac, the DW_ahb_dmac is always a
flow controller; that is, it controls the block size. This must be programmed by software in
the DW_ahb_dmac. The DW_ahb_dmac always transfers data using DMA burst
transactions if possible, for efficiency. For more information, refer to the DesignWare
DW_ahb_dmac Databook. Other DMA controllers act in a similar manner.

The relevant DMA settings are discussed in the following sections:

● “Enabling the DMA Controller Interface”
● “Overview of Operation” on page 66
● “Transmit Watermark Level and Transmit FIFO Underflow” on page 68
● “Choosing the Transmit Watermark Level” on page 68
● “Selecting DEST_MSIZE and Transmit FIFO Overflow” on page 69
● “Receive Watermark Level and Receive FIFO Overflow” on page 70
● “Choosing the Receive Watermark level” on page 70

2.7 12 4.4 15 5.6 SCL low time does not meet

2.7 13 4.8 14 5.2 OK

ic_clkfreq
(MHz)

SCL Low
Count

SCL Low
Time (μs)

SCL High
Count

SCL High
Time (μs) Remarks

66 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

● “Selecting SRC_MSIZE and Receive FIFO Underflow” on page 70
● “Handshaking Interface Operation” on page 71

Note
The DMA output dma_finish is a status signal to indicate that the DMA block transfer is
complete. DW_apb_i2c does not use this status signal, and therefore does not appear in
the I/O port list.

Enabling the DMA Controller Interface
To enable the DMA Controller interface on the DW_apb_i2c, you must write the DMA Control
Register (IC_DMA_CR). Writing a 1 into the TDMAE bit field of IC_DMA_CR register enables the
DW_apb_i2c transmit handshaking interface. Writing a 1 into the RDMAE bit field of the
IC_DMA_CR register enables the DW_apb_i2c receive handshaking interface.

Overview of Operation
As a block flow control device, the DMA Controller is programmed by the processor with the number
of data items (block size) that are to be transmitted or received by DW_apb_i2c; this is programmed
into the BLOCK_TS field of the DW_ahb_dmac CTLx register.

The block is broken into a number of transactions, each initiated by a request from the DW_apb_i2c.
The DMA Controller must also be programmed with the number of data items (in this case,
DW_apb_i2c FIFO entries) to be transferred for each DMA request. This is also known as the burst
transaction length and is programmed into the SRC_MSIZE/DEST_MSIZE fields of the
DW_ahb_dmac CTLx register for source and destination, respectively.

Figure 16 on page 67 shows a single block transfer, where the block size programmed into the DMA
Controller is 12 and the burst transaction length is set to 4. In this case, the block size is a multiple of
the burst transaction length. Therefore, the DMA block transfer consists of a series of burst
transactions. If the DW_apb_i2c makes a transmit request to this channel, four data items are written to
the DW_apb_i2c TX FIFO. Similarly, if the DW_apb_i2c makes a receive request to this channel, four
data items are read from the DW_apb_i2c RX FIFO. Three separate requests must be made to this
DMA channel before all 12 data items are written or read.

April 16, 2007 Synopsys, Inc. 67

DesignWare DW_apb_i2c Databook Functional Description

Figure 16: Breakdown of DMA Transfer into Burst Transactions

When the block size programmed into the DMA Controller is not a multiple of the burst transaction
length, as shown in Figure 17, a series of burst transactions followed by single transactions are needed
to complete the block transfer.

Figure 17: Breakdown of DMA Transfer into Single and Burst Transactions

DMA Burst DMA Burst DMA Burst

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

Transaction 1 Transaction 2 Transaction 3

12 Data Items

DMA
Multi-block Transfer

Level

12 Data Items

Block Size : DMA.CTLx.BLOCK_TS=12

Number of data items per source burst transaction : DMA.CTLx.SRC_MSIZE = 4

I2C receive FIFO watermark level: I2C.DMARDLR + 1 = DMA.CTLx.SRC_MSIZE = 4
(for more information, refer to discussion on page 70)

15 Data Items

4 Data Items 4 Data Items 4 Data Items

DMA
Block
Level

DMA Burst DMA SingleDMA SingleDMA Single
Transaction 1

DMA Burst
Transaction2

DMA Burst
Transaction 3

1 Data Item 1 Data Item 1 Data Item

Transaction 1 Transaction 2 Transaction 3

15 Data Items

DMA
Multi-Block Transfer

Level

Block Size : DMA.CTLx.BLOCK_TS=15
Number of data items per burst transaction : DMA.CTLx.DEST_MSIZE = 4

I2C transmit FIFO watermark level: I2C.IC_DMA_TDLR = DMA.CTLx.DEST_MSIZE = 4
(for more information, refer to discussion on page 69)

68 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Transmit Watermark Level and Transmit FIFO Underflow
During DW_apb_i2c serial transfers, transmit FIFO requests are made to the DW_ahb_dmac whenever
the number of entries in the transmit FIFO is less than or equal to the DMA Transmit Data Level
Register (IC_DMA_TDLR) value; this is known as the watermark level. The DW_ahb_dmac responds
by writing a burst of data to the transmit FIFO buffer, of length CTLx.DEST_MSIZE.

Data should be fetched from the DMA often enough for the transmit FIFO to perform serial transfers
continuously; that is, when the FIFO begins to empty another DMA request should be triggered.
Otherwise, the FIFO will run out of data causing a STOP to be inserted on the I2C bus. To prevent this
condition, the user must set the watermark level correctly.

Choosing the Transmit Watermark Level
Consider the example where the assumption is made:

DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR

Here the number of data items to be transferred in a DMA burst is equal to the empty space in the
Transmit FIFO. Consider two different watermark level settings.

Case 1: IC_DMA_TDLR = 2

Figure 18: Case 1 Watermark Levels

Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 2
DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 6
I2C transmit FIFO_DEPTH = 8
DMA.CTLx.BLOCK_TS = 30

Therefore, the number of burst transactions needed equals the block size divided by the number of data
items per burst:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/6 = 5

The number of burst transactions in the DMA block transfer is 5. But the watermark level,
I2C.IC_DMA_TDLR, is quite low. Therefore, the probability of an I2C underflow is high where the
I2C serial transmit line needs to transmit data, but where there is no data left in the transmit FIFO. This
occurs because the DMA has not had time to service the DMA request before the transmit FIFO
becomes empty.

FIFO_DEPTH = 8

I2C.IC_DMA_TDLR = 2

FIFO_DEPTH - I2C.IC_DMA_TDLR = 6

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

April 16, 2007 Synopsys, Inc. 69

DesignWare DW_apb_i2c Databook Functional Description

Case 2: IC_DMA_TDLR = 6

Figure 19: Case 2 Watermark Levels

Transmit FIFO watermark level = I2C.IC_DMA_TDLR = 6
DMA.CTLx.DEST_MSIZE = FIFO_DEPTH - I2C.IC_DMA_TDLR = 2
I2C transmit FIFO_DEPTH = 8
DMA.CTLx.BLOCK_TS = 30

Number of burst transactions in Block:

DMA.CTLx.BLOCK_TS/DMA.CTLx.DEST_MSIZE = 30/2 = 15

In this block transfer, there are 15 destination burst transactions in a DMA block transfer. But the
watermark level, I2C.IC_DMA_TDLR, is high. Therefore, the probability of an I2C underflow is low
because the DMA controller has plenty of time to service the destination burst transaction request
before the I2C transmit FIFO becomes empty.

Thus, the second case has a lower probability of underflow at the expense of more burst transactions
per block. This provides a potentially greater amount of AMBA bursts per block and worse bus
utilization than the former case.

Therefore, the goal in choosing a watermark level is to minimize the number of transactions per block,
while at the same time keeping the probability of an underflow condition to an acceptable level. In
practice, this is a function of the ratio of the rate at which the I2C transmits data to the rate at which the
DMA can respond to destination burst requests.

For example, promoting the channel to the highest priority channel in the DMA, and promoting the
DMA master interface to the highest priority master in the AMBA layer, increases the rate at which the
DMA controller can respond to burst transaction requests. This in turn allows the user to decrease the
watermark level, which improves bus utilization without compromising the probability of an underflow
occurring.

Selecting DEST_MSIZE and Transmit FIFO Overflow
As can be seen from Figure 19 on page 69, programming DMA.CTLx.DEST_MSIZE to a value greater
than the watermark level that triggers the DMA request may cause overflow when there is not enough
space in the I2C transmit FIFO to service the destination burst request. Therefore, the following
equation must be adhered to in order to avoid overflow:

DMA.CTLx.DEST_MSIZE <= I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (1)

In “Case 2: IC_DMA_TDLR = 6”, the amount of space in the transmit FIFO at the time the burst
request is made is equal to the destination burst length, DMA.CTLx.DEST_MSIZE. Thus, the transmit
FIFO may be full, but not overflowed, at the completion of the burst transaction.

FIFO_DEPTH = 8 I2C.IC_DMA_TDLR = 6

FIFO_DEPTH - I2C.iC_DMA_TDLR = 2

FULL

EMPTY

I2C Transmit FIFO

DMA
Controller

Transmit FIFO
Watermark level

Data In
Data Out

70 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Therefore, for optimal operation, DMA.CTLx.DEST_MSIZE should be set at the FIFO level that
triggers a transmit DMA request; that is:

DMA.CTLx.DEST_MSIZE = I2C.FIFO_DEPTH - I2C.IC_DMA_TDLR (2)

This is the setting used in Figure 17 on page 67.

Adhering to equation (2) reduces the number of DMA bursts needed for a block transfer, and this in
turn improves AMBA bus utilization.

Note
The transmit FIFO will not be full at the end of a DMA burst transfer if the I2C has
successfully transmitted one data item or more on the I2C serial transmit line during the
transfer.

Receive Watermark Level and Receive FIFO Overflow
During DW_apb_i2c serial transfers, receive FIFO requests are made to the DW_ahb_dmac whenever
the number of entries in the receive FIFO is at or above the DMA Receive Data Level Register; that is,
IC_DMA_RDLR+1. This is known as the watermark level. The DW_ahb_dmac responds by writing a
burst of data to the transmit FIFO buffer of length CTLx.SRC_MSIZE.

Data should be fetched by the DMA often enough for the receive FIFO to accept serial transfers
continuously; that is, when the FIFO begins to fill, another DMA transfer is requested. Otherwise, the
FIFO will fill with data (overflow). To prevent this condition, the user must correctly set the watermark
level.

Choosing the Receive Watermark level
Similar to choosing the transmit watermark level described earlier, the receive watermark level,
IC_DMA_RDLR+1, should be set to minimize the probability of overflow, as shown in Figure 20 on
page 71. It is a trade-off between the number of DMA burst transactions required per block versus the
probability of an overflow occurring.

Selecting SRC_MSIZE and Receive FIFO Underflow
As can be seen in Figure 20 on page 71, programming a source burst transaction length greater than the
watermark level may cause underflow when there is not enough data to service the source burst
request. Therefore, the following equation must be adhered to avoid underflow:

DMA.CTLx.SRC_MSIZE <= I2C.IC_DMA_RDLR + 1 (4)

If the number of data items in the receive FIFO is equal to the source burst length at the time the burst
request is made – DMA.CTLx.SRC_MSIZE – the receive FIFO may be emptied, but not underflowed,
at the completion of the burst transaction. For optimal operation, DMA.CTLx.SRC_MSIZE should be
set at the watermark level; that is:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 (5)

Adhering to equation (5) reduces the number of DMA bursts in a block transfer, and this in turn can
improve AMBA bus utilization.

April 16, 2007 Synopsys, Inc. 71

DesignWare DW_apb_i2c Databook Functional Description

Note
The receive FIFO will not be empty at the end of the source burst transaction if the I2C has
successfully received one data item or more on the I2C serial receive line during the burst.

Figure 20: I2C Receive FIFO

Handshaking Interface Operation
dma_tx_req, dma_rx_req – The request signals for source and destination, dma_tx_req and
dma_rx_req, are activated when their corresponding FIFOs reach the watermark levels as discussed
earlier.

The DW_ahb_dmac uses rising-edge detection of the dma_tx_req signal/dma_rx_req to identify a
request on the channel. Upon reception of the dma_tx_ack/dma_rx_ack signal from the DW_ahb_dmac
to indicate the burst transaction is complete, the DW_apb_i2c de-asserts the burst request signals,
dma_tx_req/dma_rx_req, until dma_tx_ack/dma_rx_ack is de-asserted by the DW_ahb_dmac.

When the DW_apb_i2c samples that dma_tx_ack/dma_rx_ack is de-asserted, it can re-assert the
dma_tx_req/dma_rx_req of the request line if their corresponding FIFOs exceed their watermark levels
(back-to-back burst transaction). If this is not the case, the DMA request lines remain de-asserted.
Figure 21 on page 72 shows a timing diagram of a burst transaction where pclk = hclk. Figure 22 on
page 72 shows two back-to-back burst transactions where the hclk frequency is twice the pclk
frequency.

The handshaking loop is as follows:

dma_tx_req/dma_rx_req asserted by DW_apb_i2c
-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac
-> dma_tx_req/dma_rx_req de-asserted by DW_apb_i2c
-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac.
-> dma_tx_req/dma_rx_req reasserted by DW_apb_i2c, if back-to-back transaction is required.

Note
The burst transaction request signals, dma_tx_req and dma_rx_req, are generated in the
DW_apb_i2c off pclk and sampled in the DW_ahb_dmac by hclk. The acknowledge
signals, dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac off hclk and
sampled in the DW_apb_i2c of pclk. The handshaking mechanism between the
DW_ahb_dmac and the DW_apb_i2c supports quasi-synchronous clocks; that is, hclk and
pclk must be phase-aligned, and the hclk frequency must be a multiple of the pclk
frequency.

I2C.IC_DMA_RDLR + 1FULL

EMPTY

I2C Receive FIFO

DMA
Controller

Data In

Data Out

Receive FIFO
Watermark level

72 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Figure 21: Burst Transaction – pclk = hclk

Figure 22: Back-to-Back Burst Transactions – hclk = 2*pclk

Two things to note here:

1. The burst request lines, dma_tx_req signal/dma_rx_req, once asserted remain asserted until their
corresponding dma_tx_ack/dma_rx_ack signal is received even if the respective FIFO’s drop
below their watermark levels during the burst transaction.

2. The dma_tx_req/dma_rx_req signals are de-asserted when their corresponding
dma_tx_ack/dma_rx_ack signals are asserted, even if the respective FIFOs exceed their watermark
levels.

dma_tx_single, dma_rx_single – The dma_tx_single signal is a status signal. It is asserted when there
is at least one free entry in the transmit FIFO and cleared when the transmit FIFO is full. The
dma_rx_single signal is a status signal. It is asserted when there is at least one valid data entry in the
receive FIFO and cleared when the receive FIFO is empty.

These signals are needed by only the DW_ahb_dmac for the case where the block size,
CTLx.BLOCK_TS, that is programmed into the DW_ahb_dmac is not a multiple of the burst
transaction length, CTLx.SRC_MSIZE, CTLx.DEST_MSIZE, as shown in Figure 17 on page 67. In
this case, the DMA single outputs inform the DW_ahb_dmac that it is still possible to perform single
data item transfers, so it can access all data items in the transmit/receive FIFO and complete the DMA
block transfer. The DMA single outputs from the DW_apb_i2c are not sampled by the DW_ahb_dmac
otherwise. This is illustrated in the following example.

Consider first an example where the receive FIFO channel of the DW_apb_i2c is as follows:

DMA.CTLx.SRC_MSIZE = I2C.iC_DMA_RDLR + 1 = 4
DMA.CTLx.BLOCK_TS = 12

burst transaction request

burst transaction complete

pclk

hclk

dma_tx_req

dma_tx_ack

dma_tx_single not sampled by the DW_ahb_dmac for burst transactions

burst transaction request

burst transaction complete

burst transaction request

burst transaction complete

hclk

pclk

dma_rx_req

dma_rx_ack

dma_rx_single not sampled by the DW_ahb_dmac for burst transactions

April 16, 2007 Synopsys, Inc. 73

DesignWare DW_apb_i2c Databook Functional Description

For the example in Figure 16 on page 67, with the block size set to 12, the dma_rx_req signal is
asserted when four data items are present in the receive FIFO. The dma_rx_req signal is asserted three
times during the DW_apb_i2c serial transfer, ensuring that all 12 data items are read by the
DW_ahb_dmac. All DMA requests read a block of data items and no single DMA transactions are
required. This block transfer is made up of three burst transactions.

Now, for the following block transfer:

DMA.CTLx.SRC_MSIZE = I2C.IC_DMA_RDLR + 1 = 4
DMA.CTLx.BLOCK_TS = 15

The first 12 data items are transferred as already described using three burst transactions. But when the
last three data frames enter the receive FIFO, the dma_rx_req signal is not activated because the FIFO
level is below the watermark level. The DW_ahb_dmac samples dma_rx_single and completes the
DMA block transfer using three single transactions. The block transfer is made up of three burst
transactions followed by three single transactions.

Figure 23 shows a single transaction. The handshaking loop is as follows:

dma_tx_single/dma_rx_single asserted by DW_apb_i2c
-> dma_tx_ack/dma_rx_ack asserted by DW_ahb_dmac
-> dma_tx_single/dma_rx_single de-asserted by DW_apb_i2c
-> dma_tx_ack/dma_rx_ack de-asserted by DW_ahb_dmac.

Figure 23: Single Transaction

Figure 24 shows a burst transaction, followed by three back-to-back single transactions, where the hclk
frequency is twice the pclk frequency.

Figure 24: Burst Transaction + 3 Back-to-Back Singles – hclk = 2*pclk

m0 m1 m2 n0 n1 n2 n3 n4

single transaction complete

pclk

hclk

dma_rx_req

dma_rx_ack

dma_rx_single

hclk

pclk

dma_tx_req

dma_tx_ack

dma_tx_single

burst transaction request

burst transaction complete
Single transaction complete

Single transaction complete
Single transaction complete

74 Synopsys, Inc. April 16, 2007

Functional Description DesignWare DW_apb_i2c Databook

Note
The single transaction request signals, dma_tx_single and dma_rx_single, are generated in
the DW_apb_i2c on the pclk edge and sampled in DW_ahb_dmac on hclk. The
acknowledge signals, dma_tx_ack and dma_rx_ack, are generated in the DW_ahb_dmac
on the hclk edge hclk and sampled in the DW_apb_i2c on pclk. The handshaking
mechanism between the DW_ahb_dmac and the DW_apb_i2c supports
quasi-synchronous clocks; that is, hclk and pclk must be phase aligned and the hclk
frequency must be a multiple of pclk frequency.

APB Interface
The host processor accesses data, control, and status information on the DW_apb_i2c through the APB
interface. The DW_apb_i2c supports APB data bus widths of 8, 16, and 32 bits.

For more information about the APB Interface and data widths, refer to “Integration Considerations”
on page 163.

April 16, 2007 Synopsys, Inc. 75

DesignWare DW_apb_i2c Databook Parameters

4
Parameters

This chapter describes the configuration parameters used by the DW_apb_i2c. The settings of the
configuration parameters determine the I/O signal list of the DW_apb_i2c peripheral.

Parameter Descriptions
You use the Synopsys coreConsultant tool to configure the parameters shown in the following tables:

● “Top-Level Parameters” on page 76
● “Derived Constants” on page 84

In these tables, the values 0 and 1 occasionally appear in parentheses in the descriptions for the
parameters. These are the logical values for parameter settings that appear in the coreConsultant GUI
as check boxes, drop-down lists, a multiple selection, and so on.

Note
There are references to both hardware parameters and software registers throughout this
chapter. Parameters and many of the register bits are prefixed with an IC_*. However, the
software register bits are distinguished in this chapter by italics. For instance,
IC_MAX_SPEED_MODE is a hardware parameter and configured once using Synopsys
coreConsultant, whereas the IC_SLAVE_DISABLE bit in the IC_CON register controls
whether I2C has its slave disabled.

76 Synopsys, Inc. April 16, 2007

Parameters DesignWare DW_apb_i2c Databook

Configuration Parameters
You use the Synopsys coreConsultant GUI to configure the following parameters and generate the
configured code.

Table 8: Top-Level Parameters

coreConsultant Field Label Parameter Definition

I2C Source Code Configuration

Use DesignWare Foundation
Synthesis Library
(active only when source license
available)

Parameter Name: USE_FOUNDATION
Legal Values: True (1) or False (0)
Default Value: True; only if Source license is available.
Dependencies: Must have Source license.
Description: Enables source code customers to write out RTL without
having a DesignWare license, or to retain DesignWare Foundation Building
Block Library parts in their design.

System Configuration

APB data bus width Parameter Name: APB_DATA_WIDTH
Values: 8, 16, or 32
Default Value: 8
Dependencies: None
Description: Width of the APB data bus.

Device Configuration

Highest speed I2C mode supported Parameter Name: IC_MAX_SPEED_MODE
Values: Standard (1), Fast (2), High (3)
Default Value: High (3)
Dependencies: None

Description: Maximum I2C mode supported. Controls the reset value of the
SPEED bit field [2:1] of the I2C Control Register (IC_CON). Count registers
are used to generate the outgoing clock SCL on the I2C interface. For the
speed modes that are not selected, the corresponding registers are not present
in the top-level RTL as described as follows:

● If this parameter is set to “Standard,” then the IC_FS_SCL_*,
IC_HS_MADDR, and IC_HS_SCL_* registers are not present.

● If this parameter is set to “Fast,” then the IC_HS_MADDR, and
IC_HS_SCL_* registers are not present.

Has I2C default slave address of? Parameter Name: IC_DEFAULT_SLAVE_ADDR
Values: 0x000 to 0x3ff
Default Value: 0x055
Description: Reset value of DW_apb_i2c slave address. Controls the reset
value of the I2C Slave Address Register (IC_SAR). The default values cannot
be any of the reserved address locations: 0x00 to 0x07 or 0x78 to 0x7f.

April 16, 2007 Synopsys, Inc. 77

DesignWare DW_apb_i2c Databook Parameters

Has I2C default target slave address
of?

Parameter Name: IC_DEFAULT_TAR_SLAVE_ADDR
Value: 0x000 to 0x3ff
Default Value: 0x055
Description: Reset value of DW_apb_i2c target slave address. Controls the
reset value of the IC_TAR bit field (9:0) of the I2C Target Address Register
(IC_TAR). The default values cannot be any of the reserved address
locations: 0x00 to 0x07 or 0x78 to 0x7f.

Has High Speed mode master code
of?

Parameter Name: IC_HS_MASTER_CODE
Values: 0x0 to 0x7
Default Value: 0x1
Dependencies: None
Description: High-speed mode master code of DW_apb_i2c. Controls the
reset value of the I2C HS Master Mode Code Address Register
(IC_HS_MADDR). This is a unique code that alerts other masters on the I2C
bus that a high-speed mode transfer is going to begin. For more information
about this code, refer to “Multiple Master Arbitration” on page 54.

Is an I2C master? Parameter Name: IC_MASTER_MODE
Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c is enabled to be a master after
reset. This parameter controls the reset value of bit 0 of the I2C Control
Register (IC_CON). To enable the component to be a master, you must write
a 1 in bit 0 of the IC_CON register.
NOTE: If this parameter is checked (1), then you must ensure that the
parameter IC_SLAVE_DISABLE is checked (1) as well.

Disable Slave after reset? Parameter Name: IC_SLAVE_DISABLE
Values: Unchecked (0), Checked (1)
Default Value: Unchecked (0)
Dependencies: None.
Description: Controls whether DW_apb_i2c has its slave enabled or
disabled after reset. If checked, the DW_apb_i2c slave interface is disabled
after reset. The slave also can be disabled by programming a 1 into bit 6 of
the I2C Control Register (IC_CON). By default, the slave is enabled.
NOTE: If this parameter is unchecked (0), then you must ensure that the
parameter IC_MASTER_MODE is unchecked (0) as well.

Supports 10-bit addressing in
master mode?

Parameter Name: IC_10BITADDR_MASTER
Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c supports 7- or 10-bit
addressing on the I2C interface after reset when acting as a master. Controls
the reset value of bit 4 of the I2C Control Register (IC_CON).
Master-generated transfers use this number of address bits. Additionally, it
can be reprogrammed by software by writing to the IC_CON register.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

78 Synopsys, Inc. April 16, 2007

Parameters DesignWare DW_apb_i2c Databook

Supports 10-bit addressing in slave
mode?

Parameter Name: IC_10BITADDR_MASTER
Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Controls whether DW_apb_i2c slave supports 7- or 10-bit
addressing on the I2C interface after reset when acting as a slave. Controls
reset value of part of the IC_CON register. DW_apb_i2c responds to this
number of address bits when acting as a slave; it can be programmed by
software.

Depth of transmit buffer is? Parameter Name: IC_TX_BUFFER_DEPTH
Values: 2 to 256
Default Value: 8
Dependencies: None
Description: Depth of the transmit buffer. The buffer is 9-bits wide; 8 bits
for the data, and 1 bit for the read or write command.

Depth of receive buffer is? Parameter Name: IC_RX_BUFFER_DEPTH
Values: 2 to 256
Default Value: 8
Dependencies: None
Description: Depth of receive buffer; the buffer is 8 bits wide.

Transmit buffer threshold level is? Parameter Name: IC_TX_TL
Values: 0 to (IC_TX_BUFFER_DEPTH – 1)
Default Value: 0
Dependencies: None
Description: Reset value for the threshold level of the transmit buffer. This
parameter controls the reset value of the I2C Transmit FIFO Threshold Level
Register (IC_TX_TL).

Receive buffer threshold value is? Parameter Name: IC_RX_TL
Values: 0 to (IC_RX_BUFFER_DEPTH – 1)
Default Value: 0
Dependencies: None
Description: Reset value for the threshold level of the receive buffer. This
parameter controls the reset value of the I2C Receive FIFO Threshold Level
Register (IC_RX_TL).

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

April 16, 2007 Synopsys, Inc. 79

DesignWare DW_apb_i2c Databook Parameters

Allow restart conditions to be sent
when acting as a master?

Parameter Name: IC_RESTART_EN
Values: Checked (1) or Unchecked (0)
Default Value: Checked (1)
Dependencies: None
Description: Controls the reset value of bit 5 (IC_RESTART_EN) in the
IC_CON register. By default, this parameter is checked, which allows
RESTART conditions to be sent when DW_apb_i2c is acting as a master.
Some older slaves do not support handling RESTART conditions; however,
RESTART conditions are used in several I2C operations. When the
RESTART is disabled, the master is prohibited from performing the
following functions:

● Change direction within a transfer (split)

● Send a START BYTE

● Perform any high-speed mode operation

● Perform combined format transfers in 7-bit addressing modes

● Perform a read operation with a 10-bit address

● Send multiple bytes per transfer

Hardware reset value for
IC_SDA_SETUP register

Parameter Name: IC_DEFAULT_SDA_SETUP
Legal Values: 0x00 to 0xff
Default Value: 0x64
Dependencies: None
Description: Assigns the default reset value for the IC_SDA_SETUP
register.

IC_ACK_GENERAL_CALL set to
acknowledge I2C general calls on
reset

Parameter Name: IC_DEFAULT_ACK_GENERAL_CALL
Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: Assigns the default reset value for the
IC_ACK_GENERAL_CALL register.

External Configuration

Include DMA handshaking
interface signals?

Parameter Name: IC_HAS_DMA
Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None
Description: When checked, includes the DMA handshaking interface
signals at the top-level I/O. For more information about these signals, see
“DW_apb_i2c Signal Descriptions” on page 88.

Single Interrupt output port
present?

Parameter Name: IC_INTR_IO
Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: If unchecked, each interrupt source has its own output. If
checked, all interrupt sources are combined into a single output.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

80 Synopsys, Inc. April 16, 2007

Parameters DesignWare DW_apb_i2c Databook

Polarity of interrupts is active high? Parameter Name: IC_INTR_POL
Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: By default, the polarity of the output interrupt lines is active
high (checked).

Internal Configuration

Add Encoded Parameters Parameter Name: IC_ADD_ENCODED_PARAMS
Values: Unchecked (0) or Checked (1)
Default Value: Checked (1)
Dependencies: None
Description: By adding the encoded parameters gives firmware an easy and
quick way of identifying the DesignWare component within an I/O memory
map. Some critical design-time options determine how a driver should
interact with the peripheral. There is a minimal area overhead by including
these parameters. This option allows a single driver to be developed for each
component, which will be self-configurable.
When bit 7 of the IC_COMP_PARAM_1 is read and contains a ‘1,’ the
encoded parameters can be read via software. If this bit is a ‘0,’ then the
entire register is ‘0’ regardless of the setting of any of the other parameters
that are encoded in the register’s bits. For details about this register, see the
IC_COMP_PARAM_1 register on page 151.

Specify clock counts directly
instead of supplying clock
frequency?

Parameter Name: IC_USE_COUNTS
Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None
Description: Determines whether *CNT values are provided directly or by
specifying the ic_clk clock frequency and letting coreConsultant (or
coreAssembler) calculate the count values.
When this parameter is checked, the reset values of the *CNT registers are
specified by the corresponding *COUNT configuration parameters, which
may be user-defined or derived (see standard, fast, or high speed mode
parameters later in this table).
When unchecked (default setting), the reset values of the *CNT registers are
calculated from the configuration parameter IC_CLOCK_PERIOD.

Hard code the count values for each
mode?

Parameter Name: IC_HC_COUNT_VALUES
Values: Checked (1) or Unchecked (0)
Default Value: Unchecked (0)
Dependencies: None.
Description: By checking this parameter, the *CNT registers are set to read
only. Unchecking this parameter (default setting) allows the *CNT registers
to be writable.
Regardless of the setting, the *CNT registers are always readable and have
reset values from the corresponding *COUNT configuration parameters,
which may be user-defined or derived (see standard, fast, or high speed mode
parameters later in this table). The count registers begin on page 113.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

April 16, 2007 Synopsys, Inc. 81

DesignWare DW_apb_i2c Databook Parameters

ic_clk has a period of? (ns integers
only)

Parameter Name: IC_CLOCK_PERIOD
Values: 2 to 2147483647 (ns)
Default Value: 10 (ns) – high-speed mode
Dependencies: This parameter is disabled if the IC_USE_COUNTS
parameter is checked (1).
Description: Specifies the period of incoming ic_clk, which is used to
generate outgoing I2C interface SCL clock (ns integers only). When the
count values are used to generate the IC_CLOCK_PERIOD, then the
IC_MAX_SPEED_MODE setting determines the actual period:
IC_MAX_SPEED_MODE = Standard => 500 ns
IC_MAX_SPEED_MODE = Fast => 100 ns
IC_MAX_SPEED_MODE = High => 10 ns

Relationship between pclk and
ic_clk is?

Parameter Name: IC_CLK_TYPE
Values: Identical (0), Synchronous (3), Asynchronous (1)
Default Value: Asynchronous (1)
Dependencies: None.
Description: Specifies the relationship between pclk and ic_clk.
NOTE: ic_clk frequency must be greater than or equal to pclk frequency.
Identical (0): clocks are identical; no metastability flops are required for data
passing between clock domains.
Synchronous (3): clocks are not the same frequency but have coincident
rising edges. Synchronization flops are required for data passing between
clock domains because the clocks can be different frequencies on either side.
These flops are holding the registers longer to ensure that the
synchronization is registered.
Asynchronous (1): clocks may be completely asynchronous to each other,
metastability flops are required for data passing between clock domains.

Standard Speed Mode Configuration

Std speed SCL high count is? Parameter Name: IC_SS_SCL_HIGH_COUNT
Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x0190 (400 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “fast” or “high”, this parameter is irrelevant.
Description: Reset value of Standard Speed I2C Clock SCL High Count
register (IC_SS_SCL_HCNT). The value must be calculated based on the I2C
data rate desired and I2C clock frequency. For more information, see the
IC_SS_SCL_HCNT register on page 113.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

82 Synopsys, Inc. April 16, 2007

Parameters DesignWare DW_apb_i2c Databook

Std speed SCL low count is? Parameter Name: IC_SS_SCL_LOW_COUNT
Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x01d6 (470 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “fast” or “high”, this parameter is irrelevant.
Description: Reset value of Standard Speed I2C Clock SCL Low Count
register (IC_SS_SCL_HCNT). Value must be calculated based on I2C data
rate desired and I2C clock frequency. For more information, see
IC_SS_SCL_LCNT register on page 115. When parameter
IC_USE_COUNTS = 0, this parameter is automatically calculated using the
IC_CLK_PERIOD parameter.

Fast Speed Mode

Fast speed SCL high count is? Parameter Name: IC_FS_SCL_HIGH_COUNT
Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x003c (60 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “high”, this parameter is irrelevant.
Description: Reset value of Fast Speed I2C Clock SCL High Count register
(IC_FS_SCL_HCNT). Value must be calculated based on I2C data rate
desired and I2C clock frequency. For more information, see
IC_FS_SCL_HCNT register on page 116.

Fast speed SCL low count is? Parameter Name: IC_FS_SCL_LOW_COUNT
Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x0082 (130 based on 100 MHz ic_clk)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “high” this parameter is irrelevant.
Description: Reset value of Fast Speed I2C Clock SCL Low Count register
(IC_FS_SCL_LCNT). Value must be calculated based on I2C data rate and
I2C clock frequency. For more information, see the IC_FS_SCL_LCNT
register on page 118.

High Speed Mode

For high speed mode systems the
I2C bus loading is? (pF)

Parameter Name: IC_CAP_LOADING
Values: 100 or 400
Default Value: 100
Dependencies: This parameter is not present in non-high speed mode
systems (IC_MAX_SPEED_MODE != high).
Description: For high-speed mode, the bus loading affects the high and low
pulse width of SCL.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

April 16, 2007 Synopsys, Inc. 83

DesignWare DW_apb_i2c Databook Parameters

High speed SCL high count is? Parameter Name: IC_HS_SCL_HIGH_COUNT
Values: Hex value in range 0x0006 to 0xffff
Default Value: 0x006 (6 based on 100 MHz ic_clk, 400pF bus loading)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “fast”, this parameter is irrelevant.
Description: Reset value of High Speed I2C Clock SCL High Count register
(IC_HS_SCL_HCNT). Value must be calculated based on I2C data rate
desired and high speed I2C clock frequency. For more information, see
IC_HS_SCL_HCNT register on page 120.

High speed SCL low count is? Parameter Name: IC_HS_SCL_LOW_COUNT
Values: Hex value in range 0x0008 to 0xffff
Default Value: 0x0010 (16 based on 100 MHz ic_clk, 400pF bus loading)
Dependencies: This parameter is active when the IC_USE_COUNTS
parameter is checked (1); otherwise, this value is automatically calculated
using the IC_CLK_PERIOD parameter. If the IC_MAX_SPEED_MODE
parameter is set to “standard” or “fast”, this parameter is irrelevant.
Description: Reset value of High Speed I2C Clock SCL Low Count register
(IC_HS_SCL_LCNT). The value must be calculated based on I2C data rate
and I2C clock frequency. For more information, see IC_HS_SCL_LCNT
register on page 122.

Additional Features

Allow dynamic updating of the
TAR address?

Parameter Name: I2C_DYNAMIC_TAR_UPDATE
Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: When checked, allows the IC_TAR register to be updated
dynamically even while the slave interface of DW_apb_i2c is involved in an
I2C transfer. The setting of this parameter affects the operation of
DW_apb_i2c when it is in master mode. For more details, see “Master Mode
Operation” on page 60.

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

84 Synopsys, Inc. April 16, 2007

Parameters DesignWare DW_apb_i2c Databook

The following table includes parameters that are derived from the user selected parameters in
coreConsultant.

These constants in Table 9 are derived using the following equation:

X= IC_TX_BUFFER_DEPTH

Log2(IC_TX_BUFFER_DEPTH) rounded up to the nearest integer

Enable register to generate NACKs
for data received by Slave?

Parameter Name: IC_SLV_DATA_NACK_ONLY
Values: Unchecked (0) or Checked (1)
Default Value: Unchecked (0)
Dependencies: None
Description: Enables an additional register to control whether DW_apb_i2c
generates a NACK after a data byte has been transferred to it. This NACK
generation only occurs when DW_apb_i2c is a slave-receiver. If this register
is set to a value of 1, it can only generate a NACK after a data byte is
received; hence, the data transfer is aborted and the data received is not
pushed to the receive buffer.
When the register is set to a value of 0, it generates NACK/ACK, depending
on normal criteria. If this option is selected, the default value of the
IC_SLV_DATA_NACK_ONLY register is always 0. The register must be
explicitly programmed to a value of 1 if NACKs are to be generated. The
register can only be written to successfully if DW_apb_i2c is disabled
(IC_ENABLE[0] = 0) or the slave part is inactive (IC_STATUS[6] = 0).

Table 9: Derived Constants

Parameter Legal Range Description

TX_ABW 1 to 8
Default: 3

Transmit data width of FIFO (for writes).

RX_ABW 1 to 8
Default: 3

Receive data width of FIFO (for reads)

Table 8: Top-Level Parameters (Continued)

coreConsultant Field Label Parameter Definition

April 16, 2007 Synopsys, Inc. 85

DesignWare DW_apb_i2c Databook Signals

5
Signals

The following subsections describe the DW_apb_i2c I/O signals:

● “DW_apb_i2c Interface Diagram” on page 86
● “I/O Connections” on page 87
● “DW_apb_i2c Signal Descriptions” on page 88

Note
There are references to both hardware parameters and software registers throughout this
chapter. Both hare prefixed with an IC_*. However, the software registers are
distinguished by italics. For instance, IC_MAX_SPEED_MODE is a hardware parameter
and configured once using Synopsys coreConsultant, whereas IC_ENABLE is a software
register that enables the DW_apb_i2c.

86 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

DW_apb_i2c Interface Diagram
Figure 25 shows the interface diagram for DW_apb_i2c.

Figure 25: DW_apb_i2c Interface Diagram

pclk

psel

presetn

pwrite
paddr[6:0]

penable

DW_apb_i2c

pwdata[w–1:0]

ic_clk
ic_rst_n }{APB Slave I2C

prdata[w–1:0]

ic_clk_oe
ic_clk_in_a

ic_data_oe
ic_data_in_a

ic_en

debug_s_gen
debug_p_gen
debug_data
debug_addr
debug_addr_10bit
debug_rd }

Interface

* These signals in italics are optional depending on configuration parameters set in coreAssembler or
coreConsultant.

w = 8, 16, or 32 corresponding to APB_DATA_WIDTH
Signals in red are registered. For more information about these signals, refer to Table 10 on page 88.

ic_intr(_n)
ic_rx_under_intr(_n)

ic_rx_full_intr(_n)
ic_tx_over_intr(_n)

ic_tx_empty_intr(_n)
ic_rd_req_intr(_n)
ic_tx_abrt_intr(_n)

ic_rx_done_intr(_n)

ic_stop_det_intr(_n)
ic_start_det_intr(_n)
ic_gen_call_intr(_n)

{Interrupts*

ic_current_src_en*

Master/Slave

I2C
debug_wr
debug_hs
debug_master_act
debug_slave_act

ic_activity_intr(_n)

debug_mst_cstate[4:0]
debug_slv_cstate[2:0]

Debug

ic_rx_over_intr(_n)

dma_tx_req
dma_rx_req

dma_tx_single

DMA Interface*

dma_rx_single
dma_tx_ack
dma_rx_ack

{

April 16, 2007 Synopsys, Inc. 87

DesignWare DW_apb_i2c Databook Signals

I/O Connections
As illustrated in Figure 26, the I2C interface consists of two wires, a clock (SCL) and data (SDA). For
high-speed systems, the names are SCLH and SDAH. For high-speed mode, a current source pull-up
may be used on the SCLH line. It is enabled during some active master transactions. The SDA and
SDAH connections are the same at any speed. There are no special connections required for the
DesignWare AMBA APB slave interface side of the DW_apb_i2c.

Figure 26: I/O Connection to I2C Interface

SCL(H)

ic_clk_in_a

VDD

ic_current_src_en

ic_clk_oe

SDA(H)

ic_data_oe

CLK GENERATOR

ic_data_in_a

88 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

DW_apb_i2c Signal Descriptions
Table 10 identifies the signals that are associated with the DW_apb_i2c. The signals in italics are
optional depending on configuration parameter settings. The debug signals give visibility to the
internals of the DW_apb_i2c design. They are used only for observation and serve no other purpose.

Note
The Input/Output Delay fields in the Description column list the default external input or
output delays. You can change these values by completing the Specify Clocks activity in
coreAssembler or coreConsultant. For more information, refer to “Create Gate-Level
Netlist” on page 30.

Table 10: DW_apb_i2c Signal Description

Name Width I/O Description

APB Slave Interface

pclk 1 bit In APB clock for the bus interface unit.
NOTE: ic_clk frequency must be greater than or equal to pclk
frequency.
Active State: N/A
Synchronous to: The configuration parameter IC_CLK_TYPE
indicates the relationship between pclk and ic_clk. It can be
asynchronous (1), synchronous (3), or identical (0). For more
information about this parameter, refer to page 81.
Registered: No
Default Input Delay: N/A

presetn 1 bit In An APB interface domain reset.
Active State: Low
Synchronous to: The signal is asserted asynchronously, but is
deasserted synchronously after the rising edge of pclk. The
synchronization must be provided external to this component.
Registered: No
Default Input Delay: 30%

psel 1 bit In APB peripheral select that lasts for two pclk cycles. When asserted,
indicates that the peripheral has been selected for a read/write
operation.
Active State: High
Synchronous to: pclk
Registered: No
Default Input Delay: 30%

penable 1 bit In APB enable control. Asserted for a single pclk cycle and used for
timing read/write operations.
Active State: High
Synchronous to: pclk
Registered: No
Default Input Delay: 30%

April 16, 2007 Synopsys, Inc. 89

DesignWare DW_apb_i2c Databook Signals

pwrite 1 bit In APB write control. When high, indicates a write access to the
peripheral; when low, indicates a read access.
Active State: N/A
Synchronous to: pclk
Registered: No
Default Input Delay: 30%

paddr 7 bits In APB address bus. Uses lower 7 bits of the address bus for register
decode.
Active State: N/A
Synchronous to: N/A
Registered: No
Default Input Delay: 30%

pwdata w–1:0 In APB write data bus. Driven by the bus master (DW_ahb to DW_apb
bridge) during write cycles. Can be 8, 16, or 32 bits wide depending on
APB_DATA_WIDTH parameter.
Active State: N/A
Synchronous to: N/A
Registered: No
Default Input Delay: 30%

prdata w–1:0 Out APB readback data. Driven by the selected peripheral during read
cycles. Can be 8, 16, or 32 bits wide depending on
APB_DATA_WIDTH parameter.
Active State: N/A
Synchronous to: N/A
Registered: Yes
Default Output Delay: 10%

I2C Interface (Master/Slave)

ic_clk 1 bit In Peripheral clock. DW_apb_i2c runs on this clock and is used to clock
transfers in standard, fast, and high-speed mode.
NOTE: ic_clk frequency must be greater than or equal to pclk
frequency.
Active State: N/A
Synchronous to: The configuration parameter IC_CLK_TYPE
indicates the relationship between pclk and ic_clk. It can be
asynchronous (1), synchronous (3), or identical (0). For more
information about this parameter, see page 81.
Registered: No
Default Input Delay: N/A

ic_rst_n 1 bit In I2C reset. Used to reset flip-flops that are clocked by the ic_clk clock.
Active State: Low
Synchronous to: ic_clk
Registered: No
Default Input Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

90 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

ic_clk_oe 1 bit Out Outgoing I2C clock. Open drain synchronous with ic_clk.
Active State: High
Synchronous to: ic_clk
Registered: Yes
Default Output Delay: 30%

ic_clk_in_a 1 bit In Incoming I2C clock. This is the input SCL signal. Double-registered
for metastability synchronisation and glitch-suppressed using
2-out-of-3 majority vote circuit.
NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period.
Active State: High
Synchronous to: This signal is asynchronous to ic_clk.
Registered: No
Default Input Delay: N/A

ic_data_oe 1 bit Out Outgoing I2C Data. Open Drain Synchronous to ic_clk.
Active State: High
Synchronous to: ic_clk
Registered: Yes
Default Output Delay: 30%

ic_data_in_a 1 bit In Incoming I2C Data. It is the input SDA signal. Double-registered for
metastability synchronisation and glitch-suppressed using 2-out-of-3
majority vote circuit.
NOTE: DW_apb_i2c provides filtering on the SDA (ic_data_in_a)
and SCL (ic_clk_in_a) inputs, suppressing noise and signal spikes
with durations less than one ic_clk period.
Active State: High
Synchronous to: This signal is asynchronous to ic_clk.
Registered: No
Default Input Delay: N/A

ic_en 1 bit Out I2C interface enable. Indicates whether DW_apb_i2c is enabled; this
signal is set to 0 when the IC_ENABLE register is set to 0 (disabled).
Because DW_apb_i2c always finishes its current transfer before
turning off ic_en, this signal may be used by a clock generator to
control whether the DW_apb_i2c ic_clk is active or inactive.
Active State: Low
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

April 16, 2007 Synopsys, Inc. 91

DesignWare DW_apb_i2c Databook Signals

ic_current_src_en 1 bit Out Optional. Current source pull-up. Controls the polarity of the current
source pull-up on the SCLH. This pull-up is used to shorten the rise
time on SCLH by activating an user-supplied external current source
pull-up circuit. It is disabled after a RESTART condition and after each
A/A bit when acting as the active master.
This signal enables other devices to delay the serial transfer by
stretching the LOW period of the SCLH signal. The active master
re-enables its current source pull-up circuit again when all devices
have released and the SCLH signal reaches high level, therefore,
shortening the last part of the SCLH signal’s rise time.
Active State: Low
Synchronous to: ic_clk
Registered: Yes
Default Output Delay: 30%
Dependencies: This current source is necessary for only high-speed
mode operation. This signal is present only if the configuration
parameter IC_MAX_SPEED_MODE = high.

Interrupts

ic_intr(_n) 1 bit Out Optional. Combined interrupt. This signal is included on the interface
when the configuration parameter IC_INTR_IO is checked (1) to
indicate that only one interrupt line appears on the I/O (as opposed to
individual interrupt signals).
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_intr_n signal is included on the interface to
indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_rx_over_intr(_n) 1 bit Out Optional. Receive buffer overflow interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_rx_over_intr_n signal is included on the
interface to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

92 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

ic_rx_under_intr(_n) 1 bit Out Optional. Receive buffer underflow interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear on
the I/O.
When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_rx_under_intr_n signal is included on the
interface to indicate active low polarity
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_tx_over_intr(_n) 1 bit Out Optional. Transmit buffer overflow interrupt. This signal is included
on the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear on
the I/O.
When the module is disabled, this interrupt keeps its level until the
master or slave state machines go into idle and bit 0 of the
IC_ENABLE register is 0. When ic_en goes to 0, this interrupt is
cleared.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_tx_over_intr_n signal is included on the
interface instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_tx_abrt_intr(_n) 1 bit Out Optional. Transmit abort interrupt.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_tx_abrt_intr_n signal is included on the interface
instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

April 16, 2007 Synopsys, Inc. 93

DesignWare DW_apb_i2c Databook Signals

ic_rx_done_intr(_n) 1 bit Out Optional. Receive done interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is unchecked
(0), which indicates that individual interrupt lines appear on the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_rx_done_intr_n signal is included on the
interface instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_rx_full_intr(_n) 1 bit Out Optional. Receive buffer full interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is unchecked
(0), which indicates that individual interrupt lines appear on the I/O.
When bit 0 of the IC_ENABLE register is 0, the RX FIFO is flushed
and held in reset—the RX FIFO is not full—so this ic_rx_full_intr bit
is cleared once the ic_enable bit is programmed with a 0, regardless of
the activity that continues.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_rx_full_intr_n signal is included on the interface
instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_rd_req_
intr(_n)

1 bit Out Optional. Slave read request interrupt. This signal is included on the
interface when the configuration IC_INTR_IO parameter is unchecked
(0), which indicates that individual interrupt lines appear on the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_rd_req_intr_n signal is included on the interface
instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

94 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

ic_tx_empty_intr(_n) 1 bit Out Optional. Transmit buffer empty interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear
on the I/O.
When bit 0 of the IC_ENABLE register is 0, the TX FIFO is flushed
and held in reset, where it looks like it has no data within it. The
ic_tx_empty_intr bit is raised when bit 0 of the IC_ENABLE register is
0, provided there is activity in the master or slave state machines.
When there is no longer activity, then this interrupt bit is masked with
ic_en.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_tx_empty_intr_n bit is included on the interface
instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_activity_intr(_n) 1 bit Out Optional. I2C activity interrupt. This signal is included on the interface
when the configuration IC_INTR_IO parameter is unchecked (0),
which indicates that individual interrupt lines appear on the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_activity_intr_n signal is included on the interface
instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_stop_det_intr(_n) 1 bit Out Optional. Stop condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_stop_det_intr_n signal is included on the
interface instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

April 16, 2007 Synopsys, Inc. 95

DesignWare DW_apb_i2c Databook Signals

ic_start_det_intr(_n) 1 bit Out Optional. Start condition detect on I2C interrupt. This signal is
included on the interface when the configuration IC_INTR_IO
parameter is unchecked (0), which indicates that individual interrupt
lines appear on the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_start_det_intr_n signal is included on the
interface instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

ic_gen_call_intr(_n) 1 bit Out Optional. General Call received interrupt. This signal is included on
the interface when the configuration IC_INTR_IO parameter is
unchecked (0), which indicates that individual interrupt lines appear on
the I/O.
Active State: High. Polarity is set by the configuration parameter
IC_INTR_POL (checked = active high). When IC_INTR_POL is
unchecked (0), the ic_gen_call_intr_n signal is included on the
interface instead to indicate active low polarity.
Synchronous to: pclk
Registered: Yes
Default Output Delay: 30%

DMA Interface
(only present when configured with DMA interface)

refer to “DMA Controller Interface” on page 65

dma_tx_req 1 bit Out Optional. Transmit FIFO DMA Request. Asserted when the transmit
FIFO requires service from the DMA Controller; that is, the transmit
FIFO is at or below the watermark level.
0 – not requesting
1 – requesting

Software must set up the DMA controller with the number of words to
be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the SRC_MSIZE field of
the CTLx register.
Active State: High
Synchronous to: pclk
Registered: Yes
Default Output Delay: 10%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

96 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

dma_rx_req 1 bit Out Optional. Receive FIFO DMA Request. Asserted when the receive
FIFO requires service from the DMA Controller; that is, the receive
FIFO is at or above the watermark level.
0 – not requesting
1 – requesting

Software must set up the DMA controller with the number of words to
be transferred when a request is made. When using the
DW_ahb_dmac, this value is programmed in the DEST_MSIZE field
of the CTLx register.
Active State: High
Synchronous to: pclk
Registered: Yes
Default Output Delay: 10%

dma_tx_single 1 bit Out Optional. DMA Transmit FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one free entry in the
transmit FIFO. This output does not request a DMA transfer.
0: Transmit FIFO is full
1: Transmit FIFO is not full
Active State: High
Synchronous to: pclk
Registered: Yes
Default Output Delay: 10%

dma_rx_single 1 bit Out Optional. DMA Receive FIFO Single Signal. This DMA status output
informs the DMA Controller that there is at least one valid data entry
in the receive FIFO. This output does not request a DMA transfer.
0: Receive FIFO is empty
1: Receive FIFO is not empty
Active State: High
Synchronous to: pclk
Registered: Yes
Default Output Delay: 10%

dma_tx_ack 1 bit In Optional. DMA Transmit Acknowledgement. Sent by the DMA
Controller to acknowledge the end of each APB transfer burst to the
transmit FIFO.
Active State: High
Synchronous to: pclk
Registered: Yes
Default Input Delay: 50%

dma_rx_ack 1 bit In Optional. DMA Receive Acknowledgement. Sent by the DMA
controller to acknowledge the end of each APB transfer burst from the
receive FIFO.
Active State: High
Synchronous to: pclk
Registered: Yes
Default Input Delay: 50%

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

April 16, 2007 Synopsys, Inc. 97

DesignWare DW_apb_i2c Databook Signals

I2C Debug

debug_s_gen 1 bit Out In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a START condition on the bus.
Active State: Low
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_p_gen 1 bit Out In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is driving a STOP condition on the bus.
Active State: Low
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_data 1 bit Out In the master or slave mode of operation, this signal is set to 1 when a
byte of data is actively being read or written by DW_apb_i2c. This bit
remains 1 until the transaction has completed.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_addr 1 bit Out In the master or slave mode of operation, this signal is set to 1 when
the addressing phase is active on the I2C bus.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_addr_10bit 1 bit Out In the master or slave mode of operation, this signal is set to 1 after a
10-bit address code has been detected.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_rd 1 bit Out In the master mode of operation, this signal is set to 1 whenever the
master is receiving data. This bit remains 1 until the transfer is
complete or until the direction changes.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

98 Synopsys, Inc. April 16, 2007

Signals DesignWare DW_apb_i2c Databook

debug_wr 1 bit Out In the master mode of operation, this signal is set to 1 whenever the
master is transmitting data. This bit remains 1 until the transfer is
complete or the direction changes.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_hs 1 bit Out In the master mode of operation, this signal is set to 1 when
DW_apb_i2c is performing high-speed mode transfers. This bit is set
after the high-speed master code is transmitted and remains 1 until the
master leaves high-speed mode.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_master_act 1 bit Out This bit is set to 1 when the master module is active.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_slave_act 1 bit Out This bit is set to 1 when the slave module is active.
Active State: High
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_mst_cstate 5 bits Out Master FSM state vector.
Active State: N/A
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

debug_slv_cstate 3 bit Out Slave FSM state vector.
Active State: N/A
Synchronous to: N/A
Registered: N/A
Default Output Delay: N/A

Table 10: DW_apb_i2c Signal Description (Continued)

Name Width I/O Description

April 16, 2007 Synopsys, Inc. 99

DesignWare DW_apb_i2c Databook Registers

6
Registers

This section describes the programmable registers of the DW_apb_i2c and contains the following
sections:

● “Register Memory Map” on page 100
● “Registers and Field Descriptions” on page 104

Note
There are references to both hardware parameters and software registers throughout this
chapter. Parameters and many of the register bits are prefixed with an IC_*. However, the
software register bits are distinguished in this chapter by italics. For instance,
IC_MAX_SPEED_MODE is a hardware parameter and configured once using Synopsys
coreConsultant, whereas the IC_SLAVE_DISABLE bit in the IC_CON register controls
whether I2C has its slave disabled.

100 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

Register Memory Map
Note
A read operation to an address location that contains unused bits results in a 0 value being
returned on each of the unused bits.

Shipped with the DW_apb_i2c component is an address definition (memory map) C header file. This
can be used when the DW_apb_i2c is programmed in a C environment. Table 11 provides the details of
the DW_apb_i2c memory map. Reset values are affected by the configuration parameters specified in
Table 8 on page 76.

Table 11: Memory Map of DW_apb_i2c

Name
Address
Offset Width R/W Description

IC_CON 0x00 7 bits R/W or
R-only
on bit 4

I2C Control
R/W: If configuration parameter
I2C_DYNAMIC_TAR_UPDATE is 0, all
bits are Read/Write.
If I2C_DYNAMIC_TAR_UPDATE is 1, bit
4 is Read-only.
Reset Value: Reset values for the 6 bit fields
correspond to the following configuration
parameters:
6: IC_SLAVE_DISABLE
5: IC_RESTART_EN
4: IC_10BITADDR_MASTER
3: IC_10BITADDR_SLAVE
2:1:IC_MAX_SPEED_MODE
0: IC_MASTER_MODE

IC_TAR 0x04 12 or 13
bits

R/W I2C Target Address
Width: 13, if
I2C_DYNAMIC_TAR_UPDATE = 1

12, if
I2C_DYNAMIC_TAR_UPDATE = 0
Reset Value: Reset values for the four bit
fields correspond to the following:
12: IC_10BITADDR_MASTER
configuration parameter
11: 0x0
10: 0x0
9:0: IC_DEFAULT_TAR_SLAVE_ADDR

IC_SAR 0x08 10 bits R/W I2C Slave Address
Reset Value:
IC_DEFAULT_SLAVE_ADDR

IC_HS_MADDR 0x0C 3 bits R/W I2C HS Master Mode Code Address
Reset Value: IC_HS_MASTER_CODE

April 16, 2007 Synopsys, Inc. 101

DesignWare DW_apb_i2c Databook Registers

IC_DATA_CMD 0x10 9 (writes)
8 (reads)

R/W I2C Rx/Tx Data Buffer and Command
Reset Value: 0x0
NOTE: With nine bits required for writes,
the DW_apb_i2c requires 16-bit data on the
APB bus transfers when writing into the
transmit FIFO. Eight-bit transfers remain for
reads from the receive FIFO.

IC_SS_SCL_HCNT 0x14 16 bits R/W Standard speed I2C Clock SCL High Count
Reset Value: IC_SS_SCL_HIGH_COUNT

IC_SS_SCL_LCNT 0x18 16 bits R/W Standard speed I2C Clock SCL Low Count
Reset Value: IC_SS_SCL_LOW_COUNT

IC_FS_SCL_HCNT 0x1C 16 bits R/W Fast speed I2C Clock SCL High Count
Reset Value: IC_FS_SCL_HIGH_COUNT

IC_FS_SCL_LCNT 0x20 16 bits R/W Fast speed I2C Clock SCL Low Count
Reset Value: IC_FS_SCL_LOW_COUNT

IC_HS_SCL_HCNT 0x24 16 bits R/W High speed I2C Clock SCL High Count
Reset Value: IC_HS_SCL_HIGH_COUNT

IC_HS_SCL_LCNT 0x28 16 bits R/W High speed I2C Clock SCL Low Count
Reset Value: IC_HS_SCL_LOW_COUNT

IC_INTR_STAT 0x2C 12 bits R I2C Interrupt Status
Reset Value: 0x0

IC_INTR_MASK 0x30 12 bits R/W I2C Interrupt Mask
Reset Value: 12’h8ff

IC_RAW_INTR_STAT 0x34 12 bits R I2C Raw Interrupt Status
Reset Value: 0x0

IC_RX_TL 0x38 8 bits R/W I2C Receive FIFO Threshold
Reset Value: IC_RX_TL configuration
parameter

IC_TX_TL 0x3C 8 bits R/W I2C Transmit FIFO Threshold
Reset Value: IC_TX_TL configuration
parameter

IC_CLR_INTR 0x40 1 bit R Clear Combined and Individual Interrupts
Reset Value: 0x0

IC_CLR_RX_UNDER 0x44 1 bit R Clear RX_UNDER Interrupt
Reset Value: 0x0

IC_CLR_RX_OVER 0x48 1 bit R Clear RX_OVER Interrupt
Reset Value: 0x0

Table 11: Memory Map of DW_apb_i2c (Continued)

Name
Address
Offset Width R/W Description

102 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_CLR_TX_OVER 0x4C 1 bit R Clear TX_OVER Interrupt
Reset Value: 0x0

IC_CLR_RD_REQ 0x50 1 bit R Clear RD_REQ Interrupt
Reset Value: 0x0

IC_CLR_TX_ABRT 0x54 1 bit R Clear TX_ABRT Interrupt
Reset Value: 0x0

IC_CLR_RX_DONE 0x58 1 bit R Clear RX_DONE Interrupt
Reset Value: 0x0

IC_CLR_ACTIVITY 0x5c 1 bit R Clear ACTIVITY Interrupt
Reset Value: 0x0

IC_CLR_STOP_DET 0x60 1 bit R Clear STOP_DET Interrupt
Reset Value: 0x0

IC_CLR_START_DET 0x64 1 bit R Clear START_DET Interrupt
Reset Value: 0x0

IC_CLR_GEN_CALL 0x68 1 bit R Clear GEN_CALL Interrupt
Reset Value: 0x0

IC_ENABLE 0x6C 1 bit R/W I2C Enable
Reset Value: 0x0

IC_STATUS 0x70 7 bits R I2C Status register
Reset Value: 0x6

IC_TXFLR 0x74 TX_ABW
+1

R Transmit FIFO Level Register
Reset Value: 0x0

IC_RXFLR 0x78 RX_ABW
+1

R Receive FIFO Level Register
Reset Value: 0x0

Reserved 0x7C

IC_TX_ABRT_SOURCE 0x80 16 bits R/W I2C Transmit Abort Status Register
Reset Value: 0x0

IC_SLV_DATA_NACK_ONLY 0x84 1 bit R/W Generate SLV_DATA_NACK Register
Reset Value: 0x0

IC_DMA_CR 0x88 2 bits R/W DMA Control Register for transmit and
receive handshaking interface
Reset Value: 0x0

IC_DMA_TDLR 0x8c TX_ABW R/W DMA Transmit Data Level
Reset Value: 0x0

IC_DMA_RDLR 0x90 RX_ABW R/W DMA Receive Data Level
Reset Value: 0x0

Table 11: Memory Map of DW_apb_i2c (Continued)

Name
Address
Offset Width R/W Description

April 16, 2007 Synopsys, Inc. 103

DesignWare DW_apb_i2c Databook Registers

IC_SDA_SETUP 0x94 8 bits R/W I2C SDA Setup Register
Reset Value: IC_DEFAULT_SDA_SETUP
configuration parameter

IC_ACK_GENERAL_CALL 0x98 1 bit R/W I2C ACK General Call Register
Reset Value:
IC_DEFAULT_ACK_GENERAL_CALL
configuration parameter

IC_ENABLE_STATUS 0x9C 3 bits R I2C Enable Status Register
Reset Value: 0x0

IC_COMP_PARAM_1 0xf4 32 bits R Component Parameter Register
Reset Value: Reset value depends on
configuration parameters. For more
information on component parameters and
the values therefore set by them, refer to
Table 8 on page 76.

IC_COMP_VERSION 0xf8 32 bits R Component Version ID
Reset Value: See the releases table in the
DW_apb_i2c Release Notes

IC_COMP_TYPE 0xfc 32 bits R DesignWare Component Type Register
Reset Value: 0x44570140

Table 11: Memory Map of DW_apb_i2c (Continued)

Name
Address
Offset Width R/W Description

104 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

Registers and Field Descriptions
This section describes the registers listed in Table 11 on page 100. Registers are on the pclk domain,
but status bits reflect actions that occur in the ic_clk domain. Therefore, there is delay when the pclk
register reflects the activity that occurred on the ic_clk side.

Some registers may be written only when the DW_apb_i2c is disabled, programmed by the
IC_ENABLE register. Software should not disable the DW_apb_i2c while it is active. If the
DW_apb_i2c is in the process of transmitting when it is disabled, it stops as well as deletes the contents
of the transmit buffer after the current transfer is complete. The slave continues receiving until the
remote master aborts the transfer, in which case the DW_apb_i2c could be disabled. Registers that
cannot be written to when the DW_apb_i2c is enabled are indicated in their descriptions.

Unless the clocks pclk and ic_clk are identical (IC_CLK_TYPE = 0), there is a two-register delay for
synchronous and asynchronous modes.

IC_CON

● Name: I2C Control Register
● Size: 7 bits
● Address Offset: 0x00
● Read/Write Access:

If configuration parameter I2C_DYNAMIC_TAR_UPDATE = 0, all bits are Read/Write.
If I2C_DYNAMIC_TAR_UPDATE = 1, bit 4 is Read-only.

This register can be written only when the DW_apb_i2c is disabled, which corresponds to the
IC_ENABLE register being set to 0. Writes at other times have no effect.

15:7 2:1

Reserved
IC_SLAVE_DISABLE

IC_RESTART_EN
IC_10BITADDR_MASTER(_rd_only)

IC_10BITADDR_SLAVE
SPEED

MASTER_MODE

6 5 4 3 0

April 16, 2007 Synopsys, Inc. 105

DesignWare DW_apb_i2c Databook Registers

Bits Name R/W Description

15:7 Reserved N/A Reserved.

6 IC_SLAVE_DISABLE R/W This bit controls whether I2C has its slave disabled, which means
once the presetn signal is applied, then this bit takes on the value
of the configuration parameter IC_SLAVE_DISABLE. You have
the choice of having the slave enabled or disabled after reset is
applied, which means software does not have to configure the
slave. By default, the slave is always enabled (in reset state as
well). If you need to disable it after reset, set this bit to 1.
If this bit is set (slave is disabled), DW_apb_i2c functions only as
a master and does not perform any action that requires a slave.
0: slave is enabled
1: slave is disabled
Reset value: IC_SLAVE_DISABLE configuration parameter
NOTE: Software should ensure that if this bit is written with ‘0,’
then bit 0 should also be written with a ‘0’.

5 IC_RESTART_EN R/W Determines whether RESTART conditions may be sent when
acting as a master. Some older slaves do not support handling
RESTART conditions; however, RESTART conditions are used in
several DW_apb_i2c operations.
0: disable
1: enable
When RESTART is disabled, the master is prohibited from
performing the following functions:

● Change direction within a transfer (split)

● Send a START BYTE

● High-speed mode operation

● Combined format transfers in 7-bit addressing modes

● Read operation with a 10-bit address

● Send multiple bytes per transfer

By replacing RESTART condition followed by a STOP and a
subsequent START condition, split operations are broken down
into multiple DW_apb_i2c transfers. If the above operations are
performed, it will result in setting bit 6 (TX_ABRT) of the
IC_RAW_INTR_STAT register.
Reset value: IC_RESTART_EN configuration parameter

106 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

4 IC_10BITADDR_MASTER or
IC_10BITADDR_MASTER_
rd_only

R/W
or
R

If the I2C_DYNAMIC_TAR_UPDATE configuration parameter is
set to “No” (0), this bit is named IC_10BITADDR_MASTER and
controls whether the DW_apb_i2c starts its transfers in 7- or 10-bit
addressing mode when acting as a master.
If I2C_DYNAMIC_TAR_UPDATE is set to “Yes” (1), the
function of this bit is handled by bit 12 of IC_TAR register, and
becomes a read-only copy called
IC_10BITADDR_MASTER_rd_only.
0: 7-bit addressing
1: 10-bit addressing
Dependencies: If I2C_DYNAMIC_TAR_UPDATE = 1, then this
bit is read-only. If I2C_DYNAMIC_TAR_UPDATE = 0, then this
bit can be read or write.
Reset value: IC_10BITADDR_MASTER configuration
parameter

3 IC_10BITADDR_SLAVE R/W When acting as a slave, this bit controls whether the DW_apb_i2c
responds to 7- or 10-bit addresses.
0: 7-bit addressing. The DW_apb_i2c ignores transactions that
involve 10-bit addressing; for 7-bit addressing, only the lower 7
bits of the IC_SAR register are compared.
1: 10-bit addressing. The DW_apb_i2c responds to only 10-bit
addressing transfers that match the full 10 bits of the IC_SAR
register.
Reset value: IC_10BITADDR_SLAVE configuration parameter

Note
Bits 3 and 4 of this register can be programmed differently and in any combination depending on
which format is required for the transfers. For example, master mode can be configured with
10-bit addressing and slave mode can be configured with 7-bit addressing.

2:1 SPEED R/W These bits control at which speed the DW_apb_i2c operates; its
setting is relevant only if one is operating the DW_apb_i2c in
master mode. Hardware protects against illegal values being
programmed by software. This register should be programmed
only with a value in the range of 1 to IC_MAX_SPEED_MODE;
otherwise, hardware updates this register with the value of
IC_MAX_SPEED_MODE.

1: standard mode (100 kbit/s)
2: fast mode (400 kbit/s)
3: high speed mode (3.4 Mbit/s)

Reset value: IC_MAX_SPEED_MODE configuration

0 MASTER_MODE R/W This bit controls whether the DW_apb_i2c master is enabled.
0: master disabled
1: master enabled
Reset value: IC_MASTER_MODE configuration parameter
NOTE: Software should ensure that if this bit is written with ‘1,’
then bit 6 should also be written with a ‘1’.

Bits Name R/W Description

April 16, 2007 Synopsys, Inc. 107

DesignWare DW_apb_i2c Databook Registers

Note
Because the DW_apb_i2c should only be used either as an I2C master or I2C slave (but not
both) at any one time, care should be taken in software that certain combinations of the
two bits IC_SLAVE_DISABLE and IC_MASTER_MODE are not programmed into the
“IC_CON” on page 104 register. In particular, IC_SLAVE_DISABLE and
IC_MASTER_MODE must not be set to ‘0’ and ‘1,’ respectively at any given time.

108 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_TAR

● Name: I2C Target Address Register
● Size: 12 bits or 13 bits; 13 bits only when I2C_DYNAMIC_TAR_UPDATE = 1
● Address Offset: 0x04
● Read/Write Access: Read/Write

If the configuration parameter I2C_DYNAMIC_TAR_UPDATE is set to “No” (0), this register is 12
bits wide, and bits 15:12 are reserved. This register can be written to only when IC_ENABLE is set
to 0.

However, if I2C_DYNAMIC_TAR_UPDATE = 1, then the register becomes 13 bits wide. All bits can
be dynamically updated as long as any set of the following conditions are true:

● DW_apb_i2c is NOT enabled (IC_ENABLE is set to 0); or

● DW_apb_i2c is enabled (IC_ENABLE=1); AND
DW_apb_i2c is NOT engaged in any Master (tx, rx) operation (IC_STATUS[5]=0); AND
DW_apb_i2c is enabled to operate in Master mode (IC_CON[0]=1); AND
there are NO entries in the TX FIFO (IC_STATUS[2]=1)

Bits Name R/W Description

15:13 Reserved N/A Reserved.

12 IC_10BITADDR_MASTER R/W This bit controls whether the DW_apb_i2c starts its transfers in 7-
or 10-bit addressing mode when acting as a master.
0: 7-bit addressing
1: 10-bit addressing
Dependencies: This bit exists in this register only if the
I2C_DYNAMIC_TAR_UPDATE configuration parameter is set
to “Yes” (1).
Reset value: IC_10BITADDR_MASTER configuration
parameter

11 SPECIAL R/W This bit indicates whether software performs a General Call or
START BYTE command.
0: ignore bit 10 GC_OR_START and use IC_TAR normally
1: perform special I2C command as specified in GC_OR_START
bit
Reset value: 0x0

15:13

Reserved
IC_10BITADDR_MASTER

SPECIAL
GC_OR_START

IC_TAR

11 10 9:0[12]

April 16, 2007 Synopsys, Inc. 109

DesignWare DW_apb_i2c Databook Registers

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

10 GC_OR_START R/W If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a
General Call or START byte command is to be performed by the
DW_apb_i2c.
0: General Call Address – after issuing a General Call, only writes
may be performed. Attempting to issue a read command results in
setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register.
The DW_apb_i2c remains in General Call mode until the
SPECIAL bit value (bit 11) is cleared.
1: START BYTE
Reset value: 0x0

9:0 IC_TAR R/W This is the target address for any master transaction. When
transmitting a General Call, these bits are ignored. To generate a
START BYTE, the CPU needs to write only once into these bits.
Reset value: IC_DEFAULT_TAR_SLAVE_ADDR configuration
parameter
If the IC_TAR and IC_SAR are the same, loopback exists but the
FIFOs are shared between master and slave, so full loopback is
not feasible. Only one direction loopback mode is supported
(simplex), not duplex. A master cannot transmit to itself; it can
transmit to only a slave.

Bits Name R/W Description

110 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_SAR

● Name: I2C Slave Address Register
● Size: 10 bits
● Address Offset: 0x08
● Read/Write Access: Read/Write

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
master only.

Bits Name R/W Description

15:10 Reserved N/A Reserved.

9:0 IC_SAR R/W The IC_SAR holds the slave address when the I2C is operating as a slave. For 7-bit
addressing, only IC_SAR[6:0] is used.

This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE register being set to 0. Writes at other times have
no effect.

Note
The default values cannot be any of the reserved address locations:
that is, 0x00 to 0x07, or 0x78 to 0x7f. The correct operation of the
device is not guaranteed if you program the IC_SAR or IC_TAR to
a reserved value. Refer to Table 7 on page 51 for a complete list of
these reserved values.

Reset value: IC_DEFAULT_SLAVE_ADDR configuration parameter

15:10

Reserved
IC_SAR

9:0

April 16, 2007 Synopsys, Inc. 111

DesignWare DW_apb_i2c Databook Registers

IC_HS_MADDR

● Name: I2C High Speed Master Mode Code Address Register
● Size: 3 bits
● Address Offset: 0x0c
● Read/Write Access: Read/Write

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

Bits Name R/W Description

15:3 Reserved N/A Reserved.

2:0 IC_HS_MAR R/W This bit field holds the value of the I2C HS mode master code. HS-mode
master codes are reserved 8-bit codes (00001xxx) that are not used for slave
addressing or other purposes. Each master has its unique master code; up to
eight high-speed mode masters can be present on the same I2C bus system.
Valid values are from 0 to 7. This register goes away and becomes read-only
returning 0’s if the IC_MAX_SPEED_MODE configuration parameter is set
to either Standard (1) or Fast (2).

This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE register being set to 0. Writes at other times
have no effect.
Reset value: IC_HS_MASTER_CODE configuration parameter

15:3

Reserved
IC_HS_MAR

2:0

112 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_DATA_CMD

● Name: I2C Rx/Tx Data Buffer and Command Register; this is the register the CPU writes to when
filling the TX FIFO and the CPU reads from when retrieving bytes from RX FIFO

● Size: 9 bits (writes)
8 bits (reads)

● Address Offset: 0x10
● Read/Write Access: Read/Write

Bits Name R/W Description

15:9 Reserved N/A Reserved

8 CMD R/W This bit controls whether a read or a write is performed. This bit does not control
the direction when the DW_apb_i2c acts as a slave. It controls only the direction
when it acts as a master.
1 = Read
0 = Write
When a command is entered in the TX FIFO, this bit distinguishes the write and
read commands. In slave-receiver mode, this bit is a “don’t care” because writes to
this register are not required. In slave-transmitter mode, a “0” indicates that CPU
data is to be transmitted and as DAT or IC_DATA_CMD[7:0].
When programming this bit, you should remember the following: attempting to
perform a read operation after a General Call command has been sent results in a
TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11
(SPECIAL) in the IC_TAR register has been cleared.
If a “1” is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT
interrupt occurs.

NOTE: It is possible that while attempting a master I2C read transfer on
DW_apb_i2c, a RD_REQ interrupt may have occurred simultaneously due to a
remote I2C master addressing DW_apb_i2c. In this type of scenario, DW_apb_i2c
ignores the IC_DATA_CMD write, generates a TX_ABRT interrupt, and waits to
service the RD_REQ interrupt. For more details, see “Operation Modes” on
page 56.
Reset value: 0x0

7:0 DAT R/W This register contains the data to be transmitted or received on the I2C bus. If you
are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored
by the DW_apb_i2c. However, when you read this register, these bits return the
value of data received on the DW_apb_i2c interface.
Reset value: 0x0

15:9

Reserved
CMD
DAT

7:08

April 16, 2007 Synopsys, Inc. 113

DesignWare DW_apb_i2c Databook Registers

IC_SS_SCL_HCNT

● Name: Standard Speed I2C Clock SCL High Count Register
● Size: 16 bits
● Address Offset: 0x14
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. The user should
increase the value programmed into the IC_SS_SCL_HCNT register so that the correct,
compliant I2C speed is achieved.

Bits Name R/W Description

15:0 IC_SS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high-period
count for standard speed. The table below shows some sample
IC_SS_SCL_HCNT calculations. These values apply only if the ic_clk is
set to the given frequency in the table.

This register can be written only when the I2C interface is disabled which
corresponds to the IC_ENABLE register being set to 0. Writes at other
times have no effect.
The minimum valid value is 6; hardware prevents values less than this
being written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH = 8, the order of programming is important to ensure
the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
NOTE: This register must not be programmed to a value higher than
65525, because DW_apb_i2c uses a 16-bit counter to flag an I2C bus idle
condition when this counter reaches a value of IC_SS_SCL_HCNT + 10.
Reset value: IC_SS_SCL_HIGH_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

100 3 4 6 4.67

100 5 4 12 4.00

100 10 4 32 4.00

100 15 4 52 4.00

100 20 4 72 4.00

15:0

IC_SS_SCL_HCNT

114 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

100 50 4 192 4.00

100 100 4 392 4.00

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

April 16, 2007 Synopsys, Inc. 115

DesignWare DW_apb_i2c Databook Registers

IC_SS_SCL_LCNT

● Name: Standard Speed I2C Clock SCL Low Count Register
● Size: 16 bits
● Address Offset: 0x18
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. You should increase
the value programmed into the IC_SS_SCL_LCNT register so that the correct required I2C
speed is achieved.

Bits Name R/W Description

15:0 IC_SS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period
count for standard speed. The table below shows some sample
IC_SS_SCL_LCNT calculations. These values apply only if the ic_clk is
set to the given frequency in the table.

This register can be written only when the I2C interface is disabled which
corresponds to the IC_ENABLE register being set to 0. Writes at other
times have no effect.
The minimum valid value is 8; hardware prevents values less than this
being written, and if attempted, results in 8 being set. For designs with
APB_DATA_WIDTH = 8, the order of programming is important to
ensure the correct operation of DW_apb_i2c. The lower byte must be
programmed first, and then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
Reset value: IC_SS_SCL_LOW_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL Low
required min (μs)

Minimum
L_CNT

Actual SCL
Low Time (μs)

100 3 4.7 14 5.00

100 5 4.7 23 4.80

100 10 4.7 46 4.70

100 15 4.7 70 4.73

100 20 4.7 93 4.70

100 50 4.7 234 4.70

100 100 4.7 469 4.70

15:0

IC_SS_SCL_LCNT

116 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

IC_FS_SCL_HCNT

● Name: Fast Speed I2C Clock SCL High Count Register
● Size: 16 bits
● Address Offset: 0x1c
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. The user should
increase the value programmed into the IC_FS_SCL_HCNT register so that the correct
required I2C speed is achieved.

Bits Name R/W Description

15:0 IC_FS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high-period
count for fast speed. It is used in high-speed mode to send the Master Code
and START BYTE or General CALL. The table below shows some sample
IC_FS_SCL_HCNT calculations. These values apply only if the ic_clk is
set to the given frequency in the table.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE = standard. This register can be written only
when the I2C interface is disabled, which corresponds to the IC_ENABLE
register being set to 0. Writes at other times have no effect.
The minimum valid value is 6; hardware prevents values less than this
being written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH == 8 the order of programming is important to
ensure the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
Reset value: IC_FS_SCL_HIGH_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

400 15 0.6 6 0.93

400 20 0.6 6 0.70

15:0

IC_FS_SCL_HCNT

April 16, 2007 Synopsys, Inc. 117

DesignWare DW_apb_i2c Databook Registers

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

400 50 0.6 22 0.60

400 100 0.6 52 0.60

400 150 0.6 82 0.60

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

118 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_FS_SCL_LCNT

● Name: Fast Speed I2C Clock SCL Low Count Register
● Size: 16 bits
● Address Offset: 0x20
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. The user should
increase the value programmed into the IC_FS_SCL_LCNT register so that the correct
required I2C speed is achieved.

Bits Name R/W Description

15:0 IC_FS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period count
for fast speed. It is used in high-speed mode to send the Master Code and
START BYTE or General CALL. The table below shows some sample
IC_FS_SCL_LCNT calculations. These values apply only if the ic_clk is set
to the given frequency in the table.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE = standard.

This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE register being set to 0. Writes at other times
have no effect.
The minimum valid value is 8; hardware prevents values less than this
being written, and if attempted results in 8 being set. For designs with
APB_DATA_WIDTH = 8 the order of programming is important to ensure
the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed. If the value is less
than 8 then the count value gets changed to 8.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
Reset value: IC_FS_SCL_LOW_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL Low
required min (μs)

Minimum
L_CNT

Actual SCL
Low Time (μs)

400 15 1.3 19 1.33

400 20 1.3 25 1.30

400 50 1.3 64 1.30

15:0

IC_FS_SCL_LCNT

April 16, 2007 Synopsys, Inc. 119

DesignWare DW_apb_i2c Databook Registers

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

400 100 1.3 129 1.30

400 150 1.3 194 1.30

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL Low
required min (μs)

Minimum
L_CNT

Actual SCL
Low Time (μs)

120 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_HS_SCL_HCNT

● Name: High Speed I2C Clock SCL High Count Register
● Size: 16 bits
● Address Offset: 0x24
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. The user should
increase the value programmed into the IC_HS_SCL_HCNT register so that the correct
required I2C speed is achieved.

Bits Name R/W Description

15:0 IC_HS_SCL_HCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock high period
count for high speed. The table below shows some sample
IC_HS_SCL_HCNT calculations. These values apply only if the ic_clk is
set to the given frequency in the table.
The SCL High time depends on the loading of the bus. For 100pF loading,
the SCL High time is 60ns; for 400pF loading, the SCL High time is
120ns.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE != high.

This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE register being set to 0. Writes at other
times have no effect.
The minimum valid value is 6; hardware prevents values less than this
being written, and if attempted results in 6 being set. For designs with
APB_DATA_WIDTH = 8 the order of programming is important to
ensure the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
Reset value: IC_HS_SCL_HIGH_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

3400 100 0.06 6 0.14

3400 120 0.06 6 0.12

3400 150 0.06 6 0.09

3400 200 0.06 6 0.07

15:0

IC_HS_SCL_HCNT

April 16, 2007 Synopsys, Inc. 121

DesignWare DW_apb_i2c Databook Registers

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

1700 100 0.12 6 0.14

1700 120 0.12 6 0.12

1700 150 0.12 10 0.12

1700 200 0.12 16 0.12

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL High
required min (μs)

Minimum
H_CNT

Actual SCL
High Time (μs)

122 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_HS_SCL_LCNT

● Name: High Speed I2C Clock SCL Low Count Register
● Size: 16 bits
● Address Offset: 0x28
● Read/Write Access: Read/Write

Note
The following table contains minimum values; combining both Low and High settings
does not result in the correct baud rate, but rather a higher baud rate. The user should
increase the value programmed into the IC_HS_SCL_LCNT register so that the correct
required I2C speed is achieved.

Bits Name R/W Description

15:0 IC_HS_SCL_LCNT R/W1 This register must be set before any I2C bus transaction can take place to
ensure proper I/O timing. This register sets the SCL clock low period count
for high speed. The table below shows some sample IC_HS_SCL_LCNT
calculations. These values apply only if the ic_clk is set to the given
frequency in the table.
The SCL low time depends on the loading of the bus. For 100pF loading,
the SCL low time is 160ns; for 400pF loading, the SCL low time is 320ns.
This register goes away and becomes read-only returning 0s if
IC_MAX_SPEED_MODE != high.

This register can be written only when the I2C interface is disabled, which
corresponds to the IC_ENABLE register being set to 0. Writes at other
times have no effect.
The minimum valid value is 8; hardware prevents values less than this
being written, and if attempted results in 8 being set. For designs with
APB_DATA_WIDTH == 8 the order of programming is important to
ensure the correct operation of the DW_apb_i2c. The lower byte must be
programmed first. Then the upper byte is programmed. If the value is less
than 8 then the count value gets changed to 8.
When the configuration parameter IC_HC_COUNT_VALUES is set to 1,
this register is read only.
Reset value: IC_HS_SCL_LOW_COUNT configuration parameter

1 Read-only if IC_HC_COUNT_VALUES = 1.

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL Low
required min (μs)

Minimum
L_CNT

Actual SCL
Low Time (μs)

3400 100 0.16 15 0.16

3400 120 0.16 18 0.16

3400 150 0.16 23 0.16

3400 200 0.16 30 0.16

15:0

IC_HS_SCL_LCNT

April 16, 2007 Synopsys, Inc. 123

DesignWare DW_apb_i2c Databook Registers

Note
It is not necessary to perform any write to this register if DW_apb_i2c is enabled as an I2C
slave only.

1700 100 0.32 31 0.32

1700 120 0.32 37 0.32

1700 150 0.32 47 0.32

1700 200 0.32 63 0.32

I2C Data Rate
(kbps)

ic_clkfreq
(MHz)

SCL Low
required min (μs)

Minimum
L_CNT

Actual SCL
Low Time (μs)

124 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_INTR_STAT

● Name: I2C Interrupt Status Register
● Size: 12 bits
● Address Offset: 0x2C
● Read/Write Access: Read

Each bit in this register has a corresponding mask bit in the IC_INTR_MASK register. These bits are
cleared by reading the matching interrupt clear register. The unmasked raw versions of these bits are
available in the IC_RAW_INTR_STAT register.

Bits Name R/W Description

15:12 Reserved N/A Reserved.

11 R_GEN_CALL R See “IC_RAW_INTR_STAT” on page 126 for a detailed description of
these bits.
Reset value: 0x010 R_START_DET R

9 R_STOP_DET R

8 R_ACTIVITY R

7 R_RX_DONE R

6 R_TX_ABRT R

5 R_RD_REQ R

4 R_TX_EMPTY R

3 R_TX_OVER R

2 R_RX_FULL R

1 R_RX_OVER R

0 R_RX_UNDER R

15:12

Reserved
R_GEN_CALL

R_START_DET
R_STOP_DET

R_ACTIVITY
R_RX_DONE
R_TX_ABRT
R_RD_REQ

R_TX_EMPTY
R_TX_OVER
R_RX_FULL

R_RX_OVER
R_RX_UNDER

11 10 9 8 7 6 5 4 3 2 1 0

April 16, 2007 Synopsys, Inc. 125

DesignWare DW_apb_i2c Databook Registers

IC_INTR_MASK

● Name: I2C Interrupt Mask Register
● Size: 12 bits
● Address Offset: 0x30
● Read/Write Access: Read/Write

These bits mask their corresponding interrupt status bits. They are active high; a value of 0 prevents a
bit from generating an interrupt.

Bits Name R/W Description

15:12 Reserved N/A Reserved.

11 M_GEN_CALL R/W These bits mask their corresponding interrupt status bits in the
IC_INTR_STAT register.
This bit should be set to “1” when the IC_ACK_GENERAL_CALL
register is set to “0”.
Reset value: 12’h8ff

10 M_START_DET R/W These bits mask their corresponding interrupt status bits in the
IC_INTR_STAT register.

Reset value: 12’h8ff

9 M_STOP_DET R/W

8 M_ACTIVITY R/W

7 M_RX_DONE R/W

6 M_TX_ABRT R/W

5 M_RD_REQ R/W

4 M_TX_EMPTY R/W

3 M_TX_OVER R/W

2 M_RX_FULL R/W

1 M_RX_OVER R/W

0 M_RX_UNDER R/W

15:12

Reserved
M_GEN_CALL

M_START_DET
M_STOP_DET

M_ACTIVITY
M_RX_DONE
M_TX_ABRT
M_RD_REQ

M_TX_EMPTY
M_TX_OVER
M_RX_FULL

M_RX_OVER
M_RX_UNDER

11 10 9 8 7 6 5 4 3 2 1 0

126 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_RAW_INTR_STAT

● Name: I2C Raw Interrupt Status Register
● Size: 12 bits
● Address Offset: 0x34
● Read/Write Access: Read

Unlike the IC_INTR_STAT register, these bits are not masked so they always show the true status of the
DW_apb_i2c.

Bits Name R/W Description

15:12 Reserved N/A Reserved.

11 GEN_CALL R Set only when a General Call address is received and it is acknowledged. It
stays set until it is cleared either by disabling DW_apb_i2c or when the CPU
reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the
received data in the Rx buffer.
Reset value: 0x0

10 START_DET R Indicates whether a START or RESTART condition has occurred on the I2C
interface regardless of whether DW_apb_i2c is operating in slave or master
mode.
Reset value: 0x0

9 STOP_DET R Indicates whether a STOP condition has occurred on the I2C interface
regardless of whether DW_apb_i2c is operating in slave or master mode.
Reset value: 0x0

Note
Bits 9 and 10 are used in debug mode.

There is no status bit for a RESTART condition because it is detected as a normal start condition.
The I2C protocol does not care whether it is a START or RESTART because both conditions start
from the IDLE state and send the message to all the slaves on the bus.

15:12

Reserved
GEN_CALL

START_DET
STOP_DET

ACTIVITY
RX_DONE
TX_ABRT
RD_REQ

TX_EMPTY
TX_OVER
RX_FULL

RX_OVER
RX_UNDER

11 10 9 8 7 6 5 4 3 2 1 0

April 16, 2007 Synopsys, Inc. 127

DesignWare DW_apb_i2c Databook Registers

8 ACTIVITY R This bit captures DW_apb_i2c activity and stays set until it is cleared. There
are four ways to clear it:

● Disabling the DW_apb_i2c
● Reading the IC_CLR_ACTIVITY register
● Reading the IC_CLR_INTR register
● System reset

Once this bit is set, it stays set unless one of the four methods is used to clear it.
Even if the DW_apb_i2c module is idle, this bit remains set until cleared,
indicating that there was activity on the bus.
Reset value: 0x0

7 RX_DONE R When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the
master does not acknowledge a transmitted byte. This occurs on the last byte of
the transmission, indicating that the transmission is done.
Reset value: 0x0

6 TX_ABRT R This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete
the intended actions on the contents of the transmit FIFO. This situation can
occur both as an I2C master or an I2C slave, and is referred to as a “transmit
abort”.
When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the
reason why the transmit abort takes places.
NOTE: The DW_apb_i2c flushes/resets/empties the TX FIFO whenever this
bit is set. The TX FIFO remains in this flushed state until the register
IC_CLR_TX_ABRT is read. Once this read is performed, the TX FIFO is then
ready to accept more data bytes from the APB interface.
Reset value: 0x0

5 RD_REQ R This bit is set to 1 when DW_apb_i2c is acting as a slave and another I2C
master is attempting to read data from DW_apb_i2c. The DW_apb_i2c holds
the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means
that the slave has been addressed by a remote master that is asking for data to
be transferred. The processor must respond to this interrupt and then write the
requested data to the IC_DATA_CMD register. This bit is set to 0 just after the
processor reads the IC_CLR_RD_REQ register.
Reset value: 0x0

4 TX_EMPTY R This bit is set to 1 when the transmit buffer is at or below the threshold value
set in the IC_TX_TL register. It is automatically cleared by hardware when the
buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the
TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no
data within it, so this bit is set to 1, provided there is activity in the master or
slave state machines. When there is no longer activity, then with ic_en=0, this
bit is set to 0.
Reset value: 0x0

3 TX_OVER R Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH
and the processor attempts to issue another I2C command by writing to the
IC_DATA_CMD register. When the module is disabled, this bit keeps its level
until the master or slave state machines go into idle, and when ic_en goes to 0,
this interrupt is cleared.
Reset value: 0x0

Bits Name R/W Description

128 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_RX_TL

● Name: I2C Receive FIFO Threshold Register
● Size: 8bits
● Address Offset: 0x38
● Read/Write Access: Read/Write

2 RX_FULL R Set when the receive buffer reaches or goes above the RX_TL threshold in the
IC_RX_TL register. It is automatically cleared by hardware when buffer level
goes below the threshold. If the module is disabled (IC_ENABLE[0]=0), the
RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this
bit is cleared once the IC_ENABLE bit 0 is programmed with a 0, regardless of
the activity that continues.
Reset value: 0x0

1 RX_OVER R Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and
an additional byte is received from an external I2C device. The DW_apb_i2c
acknowledges this, but any data bytes received after the FIFO is full are lost. If
the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the
master or slave state machines go into idle, and when ic_en goes to 0, this
interrupt is cleared.
Reset value: 0x0

0 RX_UNDER R Set if the processor attempts to read the receive buffer when it is empty by
reading from the IC_DATA_CMD register. If the module is disabled
(IC_ENABLE[0]=0), this bit keeps its level until the master or slave state
machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
Reset value: 0x0

Bits Name R/W Description

15:8 Reserved N/A Reserved.

7:0 RX_TL R/W Receive FIFO Threshold Level
Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2
in IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that hardware does not allow this value to be set to a value larger than
the depth of the buffer. If an attempt is made to do that, the actual value set will be
the maximum depth of the buffer.
A value of 0 sets the threshold for 1 entry, and a value of 255 sets the threshold
for 256 entries.
Reset value: IC_RX_TL configuration parameter

Bits Name R/W Description

15:8

Reserved
RX_TL

7:0

April 16, 2007 Synopsys, Inc. 129

DesignWare DW_apb_i2c Databook Registers

IC_TX_TL

● Name: I2C Transmit FIFO Threshold Register
● Size: 8 bits
● Address Offset: 0x3c
● Read/Write Access: Read/Write

IC_CLR_INTR
● Name: Clear Combined and Individual Interrupt Register
● Size: 1 bit
● Address Offset: 0x40
● Read/Write Access: Read

Bits Name R/W Description

15:8 Reserved N/A Reserved.

7:0 TX_TL R/W Transmit FIFO Threshold Level
Controls the level of entries (or below) that trigger the TX_EMPTY interrupt (bit 4
in IC_RAW_INTR_STAT register). The valid range is 0-255, with the additional
restriction that it may not be set to value larger than the depth of the buffer. If an
attempt is made to do that, the actual value set will be the maximum depth of the
buffer.
A value of 0 sets the threshold for 0 entries, and a value of 255 sets the threshold
for 255 entries.
Reset value: IC_TX_TL configuration parameter

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_INTR R Read this register to clear the combined interrupt, all individual interrupts, and
the IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable
interrupts but software clearable interrupts. Refer to Bit 9 of the
IC_TX_ABRT_SOURCE register for an exception to clearing
IC_TX_ABRT_SOURCE.
Reset value: 0x0

15:8

Reserved
TX_TL

7:0

15:1

Reserved
CLR_INTR

0

130 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_CLR_RX_UNDER
● Name: Clear RX_UNDER Interrupt Register
● Size: 1 bit
● Address Offset: 0x44
● Read/Write Access: Read

IC_CLR_RX_OVER
● Name: Clear RX_OVER Interrupt Register
● Size: 1 bit
● Address Offset: 0x48
● Read/Write Access: Read

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_RX_UNDER R Read this register to clear the RX_UNDER interrupt (bit 0) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_RX_OVER R Read this register to clear the RX_OVER interrupt (bit 1) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

15:1

Reserved
CLR_RX_UNDER

0

15:1

Reserved
CLR_RX_OVER

0

April 16, 2007 Synopsys, Inc. 131

DesignWare DW_apb_i2c Databook Registers

IC_CLR_TX_OVER
● Name: Clear TX_OVER Interrupt Register
● Size: 1 bit
● Address Offset: 0x4c
● Read/Write Access: Read

IC_CLR_RD_REQ
● Name: Clear RD_REQ Interrupt Register
● Size: 1 bit
● Address Offset: 0x50
● Read/Write Access: Read

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_TX_OVER R Read this register to clear the TX_OVER interrupt (bit 3) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_RD_REQ R Read this register to clear the RD_REQ interrupt (bit 5) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

15:1

Reserved
CLR_TX_OVER

0

15:1

Reserved
CLR_RD_REQ

0

132 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_CLR_TX_ABRT
● Name: Clear TX_ABRT Interrupt Register
● Size: 1 bit
● Address Offset: 0x54
● Read/Write Access: Read

IC_CLR_RX_DONE
● Name: Clear RX_DONE Interrupt Register
● Size: 1 bit
● Address Offset: 0x58
● Read/Write Access: Read

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_TX_ABRT R Read this register to clear the TX_ABRT interrupt (bit 6) of the
IC_RAW_INTR_STAT register, and the IC_TX_ABRT_SOURCE register.
This also releases the TX FIFO from the flushed/reset state, allowing
more writes to the TX FIFO.
Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to
clearing IC_TX_ABRT_SOURCE.
Reset value: 0x0

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_RX_DONE R Read this register to clear the RX_DONE interrupt (bit 7) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

15:1

Reserved
CLR_TX_ABRT

0

15:1

Reserved
CLR_RX_DONE

0

April 16, 2007 Synopsys, Inc. 133

DesignWare DW_apb_i2c Databook Registers

IC_CLR_ACTIVITY
● Name: Clear ACTIVITY Interrupt Register
● Size: 1 bit
● Address Offset: 0x5c
● Read/Write Access: Read

IC_CLR_STOP_DET
● Name: Clear STOP_DET Interrupt Register
● Size: 1 bit
● Address Offset: 0x60
● Read/Write Access: Read

Bits Name R.W Description

15:1 Reserved N/A Reserved.

0 CLR_ACTIVITY R Reading this register clears the ACTIVITY interrupt if the I2C is not active
anymore. If the I2C module is still active on the bus, the ACTIVITY
interrupt bit continues to be set. It is automatically cleared by hardware if
the module is disabled and if there is no further activity on the bus. The
value read from this register to get status of the ACTIVITY interrupt (bit 8)
of the IC_RAW_INTR_STAT register.
Reset value: 0x0

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_STOP_DET R Read this register to clear the STOP_DET interrupt (bit 9) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

15:1

Reserved
CLR_ACTIVITY

0

15:1

Reserved
CLR_STOP_DET

0

134 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_CLR_START_DET
● Name: Clear START_DET Interrupt Register
● Size: 1 bit
● Address Offset: 0x64
● Read/Write Access: Read

IC_CLR_GEN_CALL
● Name: Clear GEN_CALL Interrupt Register
● Size: 1 bit
● Address Offset: 0x68
● Read/Write Access: Read

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_START_DET R Read this register to clear the START_DET interrupt (bit 10) of the
IC_RAW_INTR_STAT register.
Reset value: 0x0

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 CLR_GEN_CALL R Read this register to clear the GEN_CALL interrupt (bit 11) of
IC_RAW_INTR_STAT register.
Reset value: 0x0

15:1

Reserved
CLR_START_DET

0

15:1

Reserved
CLR_GEN_CALL

0

April 16, 2007 Synopsys, Inc. 135

DesignWare DW_apb_i2c Databook Registers

Operation of the Interrupt Registers
The following figures illustrate the operation of the DW_apb_i2c interrupt registers and how they are
set and cleared. Some bits are set by hardware and cleared by software, whereas other bits are set and
cleared by hardware, as indicated in Table 12. Figure 27 shows the operation of the interrupt registers
where the bits are set by hardware and cleared by software.

Figure 27: Interrupt Scheme

Table 12: Setting and Clearing of Interrupt Bits

Interrupt Bit Fields
Set by Hardware/

Cleared by Software
Set and Cleared by

Hardware

GEN_CALL ✓ ✘

START_DET ✓ ✘

STOP_DET ✓ ✘

ACTIVITY ✘ ✓

RX_DONE ✓ ✘

TX_ABRT ✓ ✘

RD_REQ ✓ ✘

TX_EMPTY ✘ ✓

TX_OVER ✓ ✘

RX_FULL ✘ ✓

RX_OVER ✓ ✘

RX_UNDER ✓ ✘

IC_RAW_INTR_STATUS

pwdata[i]

register_en

i = register bit field

(decoded from paddr)

S/W Access

i2c_en

0

1

0

1

0
1

0

1clr_read_en

0

H/W set

{to Register
IC_INTR_MASK

ic_intr_stat

136 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_ENABLE

● Name: I2C Enable Register
● Size: 1 bit
● Address Offset: 0x6c
● Read/Write Access: Read/Write

Bits Name R/W Description

15:1 Reserved N/A Reserved.

0 ENABLE R/W Controls whether the DW_apb_i2c is enabled.
0: Disables DW_apb_i2c (TX and RX FIFOs are held in an erased state)
1: Enables DW_apb_i2c
Software can disable DW_apb_i2c while it is active. However, it is important that
care be taken to ensure that DW_apb_i2c is disabled properly. A recommended
procedure is described in “Disabling DW_apb_i2c” on page 62.
When DW_apb_i2c is disabled, the following occurs:
• The TX FIFO and RX FIFO get flushed.
• Status bits in the IC_INTR_STAT register are still active until DW_apb_i2c goes

into IDLE state.
If the module is transmitting, it stops as well as deletes the contents of the transmit
buffer after the current transfer is complete. If the module is receiving, the
DW_apb_i2c stops the current transfer at the end of the current byte and does not
acknowledge the transfer.
In systems with asynchronous pclk and ic_clk when IC_CLK_TYPE parameter set to
asynchronous (1), there is a two ic_clk delay when enabling or disabling the
DW_apb_i2c.
For a detailed description on how to disable DW_apb_i2c, refer to “Disabling
DW_apb_i2c” on page 62.
Reset value: 0x0

15:1

Reserved
ENABLE

0

April 16, 2007 Synopsys, Inc. 137

DesignWare DW_apb_i2c Databook Registers

IC_STATUS

● Name: I2C Status Register
● Size: 7 bits
● Address Offset: 0x70
● Read/Write Access: Read

This is a read-only register used to indicate the current transfer status and FIFO status. The status
register may be read at any time. None of the bits in this register request an interrupt.

When the I2C is disabled by writing 0 in bit 0 of the IC_ENABLE register:

● Bits 1 and 2 are set to 1
● Bits 3 and 4 are set to 0

When the master or slave state machines goes to idle and ic_en=0:

● Bits 5 and 6 are set to 0

Bits Name R/W Description

31:7 Reserved N/A Reserved.

6 SLV_ACTIVITY R Slave FSM Activity Status. When the Slave Finite State Machine (FSM) is not
in the IDLE state, this bit is set.
0: Slave FSM is in IDLE state so the Slave part of DW_apb_i2c is not Active
1: Slave FSM is not in IDLE state so the Slave part of DW_apb_i2c is Active
Reset value: 0x0

5 MST_ACTIVITY R Master FSM Activity Status. When the Master Finite State Machine (FSM) is
not in the IDLE state, this bit is set.
0: Master FSM is in IDLE state so the Master part of DW_apb_i2c is not Active
1: Master FSM is not in IDLE state so the Master part of DW_apb_i2c is Active

Note
IC_STATUS[0]—that is, ACTIVITY bit—is the OR of
SLV_ACTIVITY and MST_ACTIVITY bits.

Reset value: 0x0

4

Reserved
SLV_ACTIVITY

MST_ACTIVITY
RFF

RFNE
TFE

TFNF
ACTIVITY

03 2 16 531:7

138 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

4 RFF R Receive FIFO Completely Full. When the receive FIFO is completely full, this
bit is set. When the receive FIFO contains one or more empty location, this bit is
cleared.
0: Receive FIFO is not full
1: Receive FIFO is full
Reset value: 0x0

3 RFNE R Receive FIFO Not Empty. This bit is set when the receive FIFO contains one or
more entries; it is cleared when the receive FIFO is empty.
0: Receive FIFO is empty
1: Receive FIFO is not empty
Reset value: 0x0

2 TFE R Transmit FIFO Completely Empty. When the transmit FIFO is completely
empty, this bit is set. When it contains one or more valid entries, this bit is
cleared. This bit field does not request an interrupt.
0: Transmit FIFO is not empty
1: Transmit FIFO is empty
Reset value: 0x1

1 TFNF R Transmit FIFO Not Full. Set when the transmit FIFO contains one or more
empty locations, and is cleared when the FIFO is full.
0: Transmit FIFO is full
1: Transmit FIFO is not full
Reset value: 0x1

0 ACTIVITY R I2C Activity Status.
Reset value: 0x0

Bits Name R/W Description

April 16, 2007 Synopsys, Inc. 139

DesignWare DW_apb_i2c Databook Registers

IC_TXFLR

● Name: I2C Transmit FIFO Level Register
● Size: TX_ABW + 1
● Address Offset: 0x74
● Read/Write Access: Read

This register contains the number of valid data entries in the transmit FIFO buffer. It is cleared
whenever:

● The I2C is disabled
● There is a transmit abort—that is, TX_ABRT bit is set in the IC_RAW_INTR_STAT register
● The slave bulk transmit mode is aborted

The register increments whenever data is placed into the transmit FIFO and decrements when data is
taken from the transmit FIFO.

Bits Name R/W Description

31:TX_ABW+1 Reserved N/A Reserved

TX_ABW:0 TXFLR R Transmit FIFO Level. Contains the number of valid data entries in the
transmit FIFO.
Reset value: 0x0

31:TX_ABW+1

Reserved
TXFLR

TX_ABW:0

140 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_RXFLR

● Name: I2C Receive FIFO Level Register
● Size: RX_ABW + 1
● Address Offset: 0x78
● Read/Write Access: Read

This register contains the number of valid data entries in the receive FIFO buffer. It is cleared
whenever:

● The I2C is disabled
● Whenever there is a transmit abort caused by any of the events tracked in IC_TX_ABRT_SOURCE

The register increments whenever data is placed into the receive FIFO and decrements when data is
taken from the receive FIFO.

Bits Name R/W Description

31:RX_ABW+1 Reserved N/A Reserved

RX_ABW:0 RXFLR R Receive FIFO Level. Contains the number of valid data entries in the
receive FIFO.
Reset value: 0x0

31:RX_ABW+1

Reserved
RXFLR

RX_ABW:0

April 16, 2007 Synopsys, Inc. 141

DesignWare DW_apb_i2c Databook Registers

IC_TX_ABRT_SOURCE

● Name: I2C Transmit Abort Source Register
● Size: 16 bits
● Address Offset: 0x80
● Read/Write Access: Read/Write

This register has 16 bits that indicate the source of the TX_ABRT bit. Except for Bit 9, this register is
cleared whenever the IC_CLR_TX_ABRT register or the IC_CLR_INTR register is read. To clear Bit 9,
the source of the ABRT_SBYTE_NORSTRT must be fixed first; RESTART must be enabled
(IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be
cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be
cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT
is not fixed before attempting to clear this bit, Bit 9 clears for one cycle and is then re-asserted.

Bits Name R/W Description Role of DW_apb_i2c

31:16 Reserved N/A Reserved

15 ABRT_SLVRD_INTX R/W 1: When the processor side responds to
a slave mode request for data to be
transmitted to a remote master and user
writes a 1 in CMD (bit 8) of
IC_DATA_CMD register.
Reset value: 0x0

Slave-Transmitter

31:16

Reserved
ABRT_SLVRD_INTX

ABRT_SLV_ARBLOST
ABRT_SLVFLUSH_TXFIFO

ARB_LOST
ABRT_MASTER_DIS

ABRT_10B_RD_NORSTRT
ABRT_SBYTE_NORSTRT

ABRT_HS_NORSTRT
ABRT_SBYTE_ACKDET

ABRT_HS_ACKDET
ABRT_GCALL_READ

ABRT_GCALL_NOACK
ABRT_TXDATA_NOACK

ABRT_10ADDR2_NOACK
ABRT_10ADDR1_NOACK
ABRT_7B_ADDR_NOACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

142 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

14 ABRT_SLV_ARBLOST R/W 1: Slave lost the bus while transmitting
data to a remote master.
IC_TX_ABRT_SOURCE[12] is set at
the same time.
Note: Even though the slave never
“owns” the bus, something could go
wrong on the bus. This is a fail safe
check. For instance, during a data
transmission at the low-to-high
transition of SCL, if what is on the data
bus is not what is supposed to be
transmitted, then DW_apb_i2c no
longer own the bus.
Reset value: 0x0

Slave-Transmitter

13 ABRT_SLVFLUSH_TXFIFO R/W 1: Slave has received a read command
and some data exists in the TX FIFO so
the slave issues a TX_ABRT interrupt to
flush old data in TX FIFO.
Reset value: 0x0

Slave-Transmitter

12 ARB_LOST R/W 1: Master has lost arbitration, or if
IC_TX_ABRT_SOURCE[14] is also
set, then the slave transmitter has lost
arbitration.

Note: I2C can be both master and slave
at the same time.
Reset value: 0x0

Master-Transmitter
or Slave-Transmitter

11 ABRT_MASTER_DIS R/W 1: User tries to initiate a Master
operation with the Master mode
disabled.
Reset value: 0x0

Master-Transmitter
or Master-Receiver

10 ABRT_10B_RD_NORSTRT R/W 1: The restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) =
0) and the master sends a read
command in 10-bit addressing mode.
Reset value: 0x0

Master-Receiver

Bits Name R/W Description Role of DW_apb_i2c

April 16, 2007 Synopsys, Inc. 143

DesignWare DW_apb_i2c Databook Registers

9 ABRT_SBYTE_NORSTRT R/W To clear Bit 9, the source of the
ABRT_SBYTE_NORSTRT must be
fixed first; restart must be enabled
(IC_CON[5]=1), the SPECIAL bit
must be cleared (IC_TAR[11]), or the
GC_OR_START bit must be cleared
(IC_TAR[10]). Once the source of the
ABRT_SBYTE_NORSTRT is fixed,
then this bit can be cleared in the same
manner as other bits in this register. If
the source of the
ABRT_SBYTE_NORSTRT is not fixed
before attempting to clear this bit, bit 9
clears for one cycle and then gets re-
asserted.
1: The restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) =
0) and the user is trying to send a
START Byte.
Reset value: 0x0

Master

8 ABRT_HS_NORSTRT R/W 1: The restart is disabled
(IC_RESTART_EN bit (IC_CON[5]) =
0) and the user is trying to use the
master to transfer data in High Speed
mode.
Reset value: 0x0

Master-Transmitter or
Master-Receiver

7 ABRT_SBYTE_ACKDET R/W 1: Master has sent a START Byte and
the START Byte was acknowledged
(wrong behavior).
Reset value: 0x0

Master

6 ABRT_HS_ACKDET R/W 1: Master is in High Speed mode and
the High Speed Master code was
acknowledged (wrong behavior).
Reset value: 0x0

Master

5 ABRT_GCALL_READ R/W 1: DW_apb_i2c in master mode sent a
General Call but the user programmed
the byte following the General Call to
be a read from the bus
(IC_DATA_CMD[9] is set to 1).
Reset value: 0x0

Master-Transmitter

4 ABRT_GCALL_NOACK R/W 1: DW_apb_i2c in master mode sent a
General Call and no slave on the bus
acknowledged the General Call.
Reset value: 0x0

Master-Transmitter

Bits Name R/W Description Role of DW_apb_i2c

144 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

3 ABRT_TXDATA_NOACK R/W 1: This is a master-mode only bit.
Master has received an
acknowledgement for the address, but
when it sent data byte(s) following the
address, it did not receive an
acknowledge from the remote slave(s).
Reset value: 0x0

Master-Transmitter

2 ABRT_10ADDR2_NOACK R/W 1: Master is in 10-bit address mode and
the second address byte of the 10-bit
address was not acknowledged by any
slave.
Reset value: 0x0

Master-Transmitter or
Master-Receiver

1 ABRT_10ADDR1_NOACK R/W 1: Master is in 10-bit address mode and
the first 10-bit address byte was not
acknowledged by any slave.
Reset value: 0x0

Master-Transmitter or
Master-Receiver

0 ABRT_7B_ADDR_NOACK R/W 1: Master is in 7-bit addressing mode
and the address sent was not
acknowledged by any slave.
Reset value: 0x0

Master-Transmitter or
Master-Receiver

Bits Name R/W Description Role of DW_apb_i2c

April 16, 2007 Synopsys, Inc. 145

DesignWare DW_apb_i2c Databook Registers

IC_SLV_DATA_NACK_ONLY
● Name: Generate Slave Data NACK Register
● Size: 1 bit
● Address Offset: 0x84
● Read/Write Access: Read/Write

The register is used to generate a NACK for the data part of a transfer when DW_apb_i2c is acting as a
slave-receiver. This register only exists when the IC_SLV_DATA_NACK_ONLY parameter is set to 1.
When this parameter disabled, this register does not exist and writing to the register’s address has no
effect.

Bits Name R/W Description

31:1 Reserved N/A Reserved.

0 NACK R/W Generate NACK. This NACK generation only occurs when DW_apb_i2c is a
slave-receiver. If this register is set to a value of 1, it can only generate a NACK
after a data byte is received; hence, the data transfer is aborted and the data
received is not pushed to the receive buffer.
When the register is set to a value of 0, it generates NACK/ACK, depending on
normal criteria.
1 = generate NACK after data byte received
0 = generate NACK/ACK normally
Reset value: 0x0

Reserved
NACK

031:1

146 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_DMA_CR
● Name: DMA Control Register
● Size: 2 bits
● Address Offset: 0x88
● Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA Controller interface
signals (IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register
does not exist and writing to the register’s address has no effect and reading from this register address
will return zero. The register is used to enable the DMA Controller interface operation. There is a
separate bit for transmit and receive. This can be programmed regardless of the state of IC_ENABLE.

Bits Name R/W Description

31:2 Reserved N/A Reserved.

1 TDMAE R/W Transmit DMA Enable. This bit enables/disables the transmit FIFO DMA
channel.
0 = Transmit DMA disabled
1 = Transmit DMA enabled
Reset value: 0x0

0 RDMAE R/W Receive DMA Enable. This bit enables/disables the receive FIFO DMA
channel.
0 = Receive DMA disabled
1 = Receive DMA enabled
Reset value: 0x0

1

Reserved
TDMAE
RDMAE

031:2

April 16, 2007 Synopsys, Inc. 147

DesignWare DW_apb_i2c Databook Registers

IC_DMA_TDLR
● Name: DMA Transmit Data Level Register
● Size: TX_ABW–1:0
● Address Offset: 0x8c
● Read/Write Access: Read/Write

This register is only valid when the DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not
exist; writing to its address has no effect; reading from its address returns zero.

IC_DMA_RDLR

● Name: I2C Receive Data Level Register
● Size: RX_ABW–1:0
● Address Offset: 0x90
● Read/Write Access: Read/Write

This register is only valid when DW_apb_i2c is configured with a set of DMA interface signals
(IC_HAS_DMA = 1). When DW_apb_i2c is not configured for DMA operation, this register does not
exist; writing to its address has no effect; reading from its address returns zero.

Bits Name R/W Description

31:TX_ABW Reserved N/A Reserved

TX_ABW–1:0 DMATDL R/W Transmit Data Level. This bit field controls the level at which a
DMA request is made by the transmit logic. It is equal to the
watermark level; that is, the dma_tx_req signal is generated when
the number of valid data entries in the transmit FIFO is equal to or
below this field value, and TDMAE = 1.
Reset value: 0x0

Bits Name R/W Description

31:RX_ABW Reserved N/A Reserved

RX_ABW–1:0 DMARDL R/W Receive Data Level. This bit field controls the level at which a DMA
request is made by the receive logic. The watermark level =
DMARDL+1; that is, dma_rx_req is generated when the number of valid
data entries in the receive FIFO is equal to or more than this field value +
1, and RDMAE =1. For instance, when DMARDL is 0, then dma_rx_req
is asserted when 1 or more data entries are present in the receive FIFO.
Reset value: 0x0

Reserved
DMATDL

TX_ABW-1:031:TX_ABW+1

Reserved
DMARDL

RX_ABW-1:031:RX_ABW+1

148 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_SDA_SETUP

● Name: I2C SDA Setup Register
● Size: 8 bits
● Address Offset: 0x94
● Read/Write Access: Read/Write

This register controls the amount of time delay (in terms of number of ic_clk clock periods) introduced
in the rising edge of SCL, relative to SDA changing, when DW_apb_i2c services a read request in a
slave-transmitter operation. The relevant I2C requirement is tSU:DAT (note 4) as detailed in the I2C Bus
Specification.

IC_ACK_GENERAL_CALL

● Name: I2C ACK General Call Register
● Size: 1 bit
● Address Offset: 0x98
● Read/Write Access: Read/Write

The register controls whether DW_apb_i2c responds with a ACK or NACK when it receives an I2C
General Call address.

Bits Name R/W Description

31:8 Reserved N/A Reserved

7:0 SDA_SETUP R/W SDA Setup. It is recommended that if the required delay is 1000ns, then
for an ic_clk frequency of 10 MHz, IC_SDA_SETUP should be
programmed to a value of 11.
Default Reset value: 0x64, but can be hardcoded by setting the
IC_DEFAULT_SDA_SETUP configuration parameter.

Bits Name R/W Description

31:1 Reserved N/A Reserved

0 ACK_GEN_CALL R/W ACK General Call. When set to 1, DW_apb_i2c responds with a ACK
(by asserting ic_data_oe) when it receives a General Call. Otherwise,
DW_apb_i2c responds with a NACK (by negating ic_data_oe).
Default Reset value: 0x1, but can be hardcoded by setting the
IC_DEFAULT_ACK_GENERAL_CALL configuration parameter.

SDA_SETUP

7:031:8

Reserved
ACK_GEN_CALL

031:1

April 16, 2007 Synopsys, Inc. 149

DesignWare DW_apb_i2c Databook Registers

IC_ENABLE_STATUS

● Name: I2C Enable Status Register
● Size: 3 bits
● Address Offset: 0x9C
● Read/Write Access: Read

The register is used to report the DW_apb_i2c hardware status when the IC_ENABLE register is set
from 1 to 0; that is, when DW_apb_i2c is disabled.

If IC_ENABLE has been set to 1, bits 2:1 are forced to 0, and bit 0 is forced to 1.

If IC_ENABLE has been set to 0, bits 2:1 is only be valid as soon as bit 0 is read as ‘0’.

Note
When IC_ENABLE has been written with ‘0,’ a delay occurs for bit 0 to be read as ‘0’
because disabling the DW_apb_i2c depends on I2C bus activities.

Bits Name R/W Description

31:3 Reserved N/A Reserved

2 SLV_RX_DATA_LOST R Slave Received Data Lost. This bit indicates if a Slave-Receiver
operation has been aborted with at least one data byte received from an
I2C transfer due to the setting of IC_ENABLE from 1 to 0.
When read as 1, DW_apb_i2c is deemed to have been actively engaged
in an aborted I2C transfer (with matching address) and the data phase of
the I2C transfer has been entered, even though a data byte has been
responded with a NACK. NOTE: If the remote I2C master terminates
the transfer with a STOP condition before the DW_apb_i2c has a chance
to NACK a transfer, and IC_ENABLE has been set to 0, then this bit is
also set to 1.
When read as 0, DW_apb_i2c is deemed to have been disabled without
being actively involved in the data phase of a Slave-Receiver transfer.
NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as
0.
Reset value: 0x0

Reserved
SLV_FIFO_FILLED_AND_FLUSHED

SLV_RX_ABORTED
IC_EN

2 1 031:3

150 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

1 SLV_DISABLED_WHI
LE_BUSY

R Slave Disabled While Busy (Transmit, Receive). This bit indicates if a
potential or active Slave operation has been aborted due to the setting of
the IC_ENABLE register from 1 to 0. This bit is set when the CPU writes
a 0 to the IC_ENABLE register while: (a) DW_apb_i2c is receiving the
address byte of the Slave-Transmitter operation from a remote master;
OR, (b) address and data bytes of the Slave-Receiver operation from a
remote master.
When read as 1, DW_apb_i2c is deemed to have forced a NACK during
any part of an I2C transfer, irrespective of whether the I2C address
matches the slave address set in DW_apb_i2c (IC_SAR register) OR if
the transfer is completed before IC_ENABLE is set to 0 but has not
taken effect.

NOTE: If the remote I2C master terminates the transfer with a STOP
condition before the DW_apb_i2c has a chance to NACK a transfer, and
IC_ENABLE has been set to 0, then this bit will also be set to 1.
When read as 0, DW_apb_i2c is deemed to have been disabled when
there is master activity, or when the I2C bus is idle.
NOTE: The CPU can safely read this bit when IC_EN (bit 0) is read as
0.
Reset value: 0x0

0 IC_EN R ic_en Status. This bit always reflects the value driven on the output port
ic_en.
When read as 1, DW_apb_i2c is deemed to be in an enabled state.
When read as 0, DW_apb_i2c is deemed completely inactive.
NOTE: The CPU can safely read this bit anytime. When this bit is read
as 0, the CPU can safely read SLV_RX_DATA_LOST (bit 2) and
SLV_DISABLED_WHILE_BUSY (bit 1).
Reset value: 0x0

Bits Name R/W Description

April 16, 2007 Synopsys, Inc. 151

DesignWare DW_apb_i2c Databook Registers

IC_COMP_PARAM_1
● Name: Component Parameter Register 1
● Size: 32 bits
● Address Offset: 0xf4
● Read/Write Access: Read

Bits Name R/W Description

Note
This is a constant read-only register that contains encoded information about the
component's parameter settings. The reset value depends on coreConsultant parameter(s).

31:24 Reserved N/A Reserved

23:16 TX_BUFFER_DEPTH R The value of this register is derived from the
IC_TX_BUFFER_DEPTH coreConsultant parameter.
0x00 = Reserved
0x01 = 2
0x02 = 3
to
0xFF = 256

15:8 RX_BUFFER_DEPTH R The value of this register is derived from the
IC_RX_BUFFER_DEPTH coreConsultant parameter. For
a description of this parameter, see Table 8 on page 76.
0x00 = Reserved
0x01 = 2
0x02 = 3
to
0xFF = 256

7 ADD_ENCODED_PARAMS R The value of this register is derived from the
IC_ADD_ENCODED_PARAMS coreConsultant
parameter. For a description of this parameter, see Table 8
on page 76. Reading 1 in this bit means that the capability
of reading these encoded parameters via software has been
included. Otherwise, the entire register is 0 regardless of
the setting of any other parameters that are encoded in the
bits.
0: False
1: True

Reserved
TX_BUFFER_DEPTH
RX_BUFFER_DEPTH

ADD_ENCODED_PARAMS
HAS_DMA

INTR_IO
HC_COUNT_VALUES
MAX_SPEED_MODE

APB_DATA_WIDTH

31:24 23:16 15:8 7 6 5 4 3:2 1:0

152 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

IC_COMP_VERSION

● Name: I2C Component Version Register
● Size: 32 bits
● Address Offset: 0xf8
● Read/Write Access: Read

6 HAS_DMA R The value of this register is derived from the
IC_HAS_DMA coreConsultant parameter. For a
description of this parameter, see Table 8 on page 76.
0: False
1: True

5 INTR_IO R The value of this register is derived from the IC_INTR_IO
coreConsultant parameter. For a description of this
parameter, see Table 8 on page 76.
0: Individual
1: Combined

4 HC_COUNT_VALUES R The value of this register is derived from the
IC_HC_COUNT_VALUES coreConsultant parameter. For
a description of this parameter, see Table 8 on page 76.
0: False
1: True

3:2 MAX_SPEED_MODE R The value of this register is derived from the
IC_MAX_SPEED_MODE coreConsultant parameter. For
a description of this parameter, see Table 8 on page 76.
0x0 = Reserved
0x1 = Standard
0x2 = Fast
0x3 = High

1:0 APB_DATA_WIDTH R The value of this register is derived from the
APB_DATA_WIDTH coreConsultant parameter. For a
description of this parameter, see Table 8 on page 76.
0x0 = 8 bits
0x1 = 16 bits
0x2 = 32 bits
0x3 = Reserved

Bits Name R/W Description

31:0 IC_COMP_VERSION R Specific values for this register are described in the Releases Table
in the DW_apb_i2c Release Notes.

Bits Name R/W Description

31:0

IC_COMP_VERSION

April 16, 2007 Synopsys, Inc. 153

DesignWare DW_apb_i2c Databook Registers

IC_COMP_TYPE

● Name: I2C Component Type Register
● Size: 32 bits
● Address Offset: 0xfc
● Read/Write Access: Read

.

Bits Name R/W Description

31:0 IC_COMP_TYPE R Designware Component Type number = 0x44_57_01_40. This
assigned unique hex value is constant and is derived from the two
ASCII letters “DW” followed by a 16-bit unsigned number.

31:0

IC_COMP_TYPE

154 Synopsys, Inc. April 16, 2007

Registers DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 155

DesignWare DW_apb_i2c Databook Programming the DW_apb_i2c

7
Programming the DW_apb_i2c

The DW_apb_i2c can be programmed via software registers or the DW_apb_i2c low-level software
driver. This chapter contains the following topics:

● “Software Registers”
● “Software Drivers”

Software Registers
For information about programming the software registers in terms of DW_apb_i2c operation, refer to
“Slave Mode Operation” on page 56 and “Master Mode Operation” on page 60. The software registers
are described in more detail in Chapter 6 on page 99, “Registers”.

Software Drivers
The family of DesignWare AMBA Synthesizable Components includes a Driver Kit for the
DW_apb_i2c component. This low-level Driver Kit allows you to easily program a DW_apb_i2c
component and integrate your code into a larger software system. The Driver Kit provides the
following benefits to IP designers:

● Proven method of access to DW_apb_i2c minimizing usage errors
● Rapid software development with minimum overhead
● Detailed knowledge of DW_apb_i2c register bit fields not required
● Easy integration of DW_apb_i2c into existing software system
● Programming at register level eliminated

You must purchase a source code license (DWC-APB-Advanced-Source) to use the DW_apb_i2c
Driver Kit. However, you can access some Driver Kit files and documentation in
$DESIGNWARE_HOME/drivers/DW_apb_i2c/latest. For more information about the Driver Kit,
refer to the DW_apb_i2c Driver Kit User Guide. For more information about purchasing the source
code license and obtaining a download of the Driver Kit, contact Synopsys at
designware@synopsys.com for details.

156 Synopsys, Inc. April 16, 2007

Programming the DW_apb_i2c DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 157

DesignWare DW_apb_i2c Databook Verification

8
Verification

This chapter provides an overview of the testbench available for DW_apb_i2c verification. Once you
have configured the DW_apb_i2c in coreConsultant and have set up the verification environment, you
can run simulations automatically. The following sections describe the testbench:

● “Overview of Vera Tests”
● “Overview of DW_apb_i2c Testbench” on page 160

For more information about running simulations for DW_apb_i2c in coreAssembler, refer to “Verify
Component” on page 36. For more information about verifying DW_apb_i2c in coreConsultant, see
“Verifying the DW_apb_i2c” on page 175.

Note
The DW_apb_i2c verification testbench is built with DesignWare AMBA Verification IP
(VIP). Please make sure you have the supported version of the VIP components for this
release, otherwise, you may experience some tool compatibility problems. For more
information about supported tools in this release, refer to the following web page:

www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

Overview of Vera Tests
The DW_apb_i2c verification testbench performs the following set of tests that have been written to
exhaustively verify the functionality and have also achieved maximum RTL code coverage.

Note
All tests use the APB Interface to program memory mapped registers dynamically during
tests.

● “APB Slave Interface” on page 158
● “DW_apb_i2c Master Operation” on page 158
● “DW_apb_i2c Slave Operation” on page 159
● “DW_apb_i2c Interrupts” on page 159
● “DMA Handshaking Interface” on page 159

http://www.synopsys.com/products/designware/docs/doc/amba/latest/dw_amba_install.pdf

158 Synopsys, Inc. April 16, 2007

Verification DesignWare DW_apb_i2c Databook

APB Slave Interface
This suite of tests is run to verify that the APB interface functions correctly by checking the following:

● All non-configuration parameter register reset values are verified.

● All read-only registers are written to with opposite values to verify that they are read only.

● All writable registers are written to with opposite values to verify that they can be written.

● Some registers can be written only when the DW_apb_i2c is disabled.Confirm that those registers
are non-writable in that mode. Attempt to write the opposite values to those registers while the
DW_apb_i2c is disabled and verify that the writes are ignored.

● The *CNT registers can be written to only if the configuration parameter
IC_HC_COUNT_VALUES = 0. Verify that the registers are read-only when
IC_HC_COUNT_VALUES = 0 and writable when IC_HC_COUNT_VALUES = 1.

● Confirm that it is not possible to write the transmit buffer threshold level (IC_TX_TL) higher than
the size of the transmit buffer. Verify that if a larger value is written that the value becomes set to
the size of the transmit buffer (max).

● Confirm that it is not possible to write the receive buffer threshold level (IC_RX_TL) higher than
the size of the transmit buffer. Verify that if a larger value is written that the value becomes set to
the size of the transmit buffer (max).

● Write illegal value 0 to SPEED bits in IC_CON and verify that the new value is parameter
IC_MAX_SPEED_MODE.

● Verify that the SPEED bits in IC_CON cannot be written to higher speeds than configuration
parameter IC_MAX_SPEED_MODE.

DW_apb_i2c Master Operation
This suite of tests is run only when the DW_apb_i2c is configured as a master. For instance, these tests
go through all combinations of speed, addressing, read/write, and multi-byte transfers. Commands are
issued to the DW_apb_i2c, and the I2C Slave is the target and used to verify the transfers. The tests also
verify the following:

● SCL low and SCL high times are with I2C specification
● Operation of all registers
● Master arbitration
● Debug outputs
● Disabling of DW_apb_i2c shown correctly on ic_en output
● Programmed count values for all the *CNT registers
● The current source enable output operates correctly
● Combined format operation (7- and 10-bit addressing modes)
● Restart enable and disable
● Clock synchronization by stretching SCL
● Loop-back operation by performing simultaneous master-transmitter, slave-receiver sending

multiple bytes. A single-byte transfer with master-receiver, slave-transmitter is also performed

April 16, 2007 Synopsys, Inc. 159

DesignWare DW_apb_i2c Databook Verification

DW_apb_i2c Slave Operation
This suite of tests is run only when the DW_apb_i2c is configured as a slave. Similar to the tests
developed for the master, the driving force is the Serial Master BFM. For instance, these tests go
through all combinations of speed, addressing, read/write, and multi-byte transfers. The I2C master is
used to generate transfers and the DW_apb_i2c is the target; the AHB Master is used to verify the
transfers. The tests also verify the following:

● Operation of all registers
● Debug outputs
● Disabling of DW_apb_i2c shown correctly on ic_en output
● Combined format operation (7- and 10-bit addressing modes)

DW_apb_i2c Interrupts
These tests verify that the DW_apb_i2c generates and handles the servicing of interrupts correctly.
They also verify operation of the debug ports.

DMA Handshaking Interface
These tests verify that DW_apb_i2c generates and responds through the handshaking interface.
Transfers are generated within the DMA BFM and transmitted through the I2C protocol from the DUT
to the ALT_DUT and vice versa. Different watermark levels are selected to control the clearing on the
dma_tx_req/dma_rx_req lines once an acknowledgement is received. A random number of bytes are
transferred using only the handshaking interface.

DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update
This test is run only if the DW_apb_i2c is configured as a master and the parameter
I2C_DYNAMIC_TAR_UPDATE = 1. This test verifies that DW_apb_i2c Master Target address
(IC_TAR) and the parameter IC_10BITADDR_MASTER can be updated dynamically while the
DW_apb_i2c Slave is involved in an I2C transfer on the I2C bus.

Generate NACK as a Slave-Receiver
This test is always run and tests the functionality of DW_apb_i2c, depending on whether the parameter
IC_SLV_DATA_NACK_ONLY is set to 0 or 1. This test verifies that ACK/NACKs are generated
correctly when DW_apb_i2c is acting as a slave-receiver, depending on whether
IC_SLV_DATA_NACK_ONLY register exists (set by having parameter
IC_SLV_DATA_NACK_ONLY=1). If the register exists, its value is set to 1 for the duration of the
test. If the register exists (and therefore its value is 1), a NACK is generated by the slave when data is
sent to it, the transfer is aborted, and data is not written to the receive buffer. Otherwise, ACKs are
generated for the duration of the transfer, the transfer completes successfully, and the data is written to
the receive buffer successfully.

SCL Held Low for Duration Specified in IC_SDA_SETUP
This test verifies that during a Slave-Receive I2C transfer, DW_apb_i2c asserts the output port
ic_data_oe, holding SCL low for the minimum period specified in the IC_SDA_SETUP register. This
only happens every time the I2C master ACKs a data byte, and the transmit FIFO in DW_apb_i2c is
not filled to satisfy this read request.

160 Synopsys, Inc. April 16, 2007

Verification DesignWare DW_apb_i2c Databook

Generate ACK/NACK for General Call
This test verifies that the IC_ACK_GENERAL_CALL bit controls whether DW_apb_i2c ACK or
NACKs an I2C general call address.

Overview of DW_apb_i2c Testbench
As illustrated in Figure 28 on page 161, the Verilog DW_apb_i2c testbench includes two instantiations
of the design under test (DUT), AHB and APB Bridge bus models, and a Vera shell. The Vera shell
consists of a number of serial slave BFMs, a master slave BFM, and a DMA BFM to simulate and
stimulate traffic to and from the DW_apb_i2c.

The test_DW_apb_i2c.v file shows the instantiation of the top-level MacroCell in a testbench and
resides in the workspace/sim/testbench directory. The testbench tests the user configuration specified in
the Specify Configuration task of coreConsultant. The testbench also tests that the component is
AMBA-compliant and includes a self-checking mechanism. When a coreKit has been unpacked and
configured, the verification environment is stored in workspace/sim. Files in workspace/sim/test_i2c
form the actual testbench for DW_apb_i2c.

April 16, 2007 Synopsys, Inc. 161

DesignWare DW_apb_i2c Databook Verification

Figure 28: DW_apb_i2c Testbench

AHB Master
BFM

DW_ahb

AHB Monitor

DW_apb

DUT
DW_apb_i2c.v

(APB Slave)

Vera Tests
(test stimuli and results)

(AHB Slave)

test_DW_apb_i2c.v

I2C Slave
BFM

APB Monitor

I2C Master
BFM

Interrupts,
debug outputs

Vera Stimulus

= Vera shell, all other Verilog

I2C Monitor

to Vera

AHB Slave
BFM

APB Slave
BFM

ALT_DUT
DW_apb_i2c.v

(APB Slave)

APB bus

I2C bus

DMA
BFM

DMA
BFM

M M

M = master

Handshaking I/F Handshaking I/F

162 Synopsys, Inc. April 16, 2007

Verification DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 163

DesignWare DW_apb_i2c Databook Integration Considerations

9
Integration Considerations

After you have configured, tested, and synthesized your component with the coreTools flow, you can
integrate the component into your own design environment. The following sections discuss general
integration considerations for the slave interface of APB peripherals:

● “Digital/Analog Domain Functional Partitioning” on page 163
● “Reading and Writing from an APB Slave” on page 164
● “Write Timing Operation” on page 167
● “Read Timing Operation” on page 168
● “Accessing Top-level Constraints” on page 168

Digital/Analog Domain Functional Partitioning
The I2C protocol requires that an I2C device (Digital controller and I/O pad) implement 50nS of spike
rejection and include a 300ns SDA hold time. It does not specify where these functional elements
should be implemented—in the pad or in the digital controller. In order to meet these two timing
requirements, you must ensure that the I/O pads, used in conjunction with DW_apb_i2c, implement the
50ns spike rejection, as well as the 300ns SDA hold time. These are described as as follows

1. The 300ns hold requirement in the Philips I2C-Bus Specification is related to the SDA relative to
the falling edge of SCL for I2C receivers.

The receiver inside DW_apb_i2c does not provide the 300ns of hold time outlined in the I2C bus
specification, and this hold time functionality should be implemented externally to the
DW_apb_i2c, such as the I/O pad.

When DW_apb_i2c is receiving data as:

a. a slave, the received data is sampled on the rising edge of SCL.

b. a master, the received data is sampled just prior to the falling edge.

This means that:

a. DW_apb_i2c, as a slave-receiver, either (1) requires the I2C master to implement the 300ns
hold time; OR (2) requires the I/O pad to implement the hold time.

b. DW_apb_i2c, as a master-receiver, always samples the data ahead of the falling edge of SCL,
because DW_apb_i2c controls the SCL.

164 Synopsys, Inc. April 16, 2007

Integration Considerations DesignWare DW_apb_i2c Databook

Appendix D on page 189 in this databook contains information to advise customers on how to fix
non-Synopsys I2C receivers, which are communicating with DW_apb_i2c acting as an I2C
master-transmitter. This means that holding the transmitter output from DW_apb_i2c for that
300ns, to emulate the 300ns hold time, can help such non-compliant, non-Synopsys I2C receivers.

2. There is a requirement in the I2C-Bus Specification that in FS mode, a I2Cdevice needs to suppress
input spikes that are up to 50ns wide in the FS mode (such as, the tSP value from Table 4 of the
Philips specification) and up to 10ns in the HS mode.

The I2C standard requires the receiver to take responsibility of this requirement, but does not
specify how or where to implement it (for instance, either in the receiver I/O pad or digital control
logic).

If ic_clk is 20MHz or less, then DW_apb_i2c filters away the 50ns spike in FS mode, as required
by the specification. In HS mode, the width of the spike required to be filtered away is 10ns and
DW_apb_i2c achieves 9.49ns with ic_clk at 105.4MHz.

If the previous requirements cannot be met satisfactorily, then you must ensure that such spike
rejection be handled externally to DW_apb_i2c, such as in the I/O pad.

Reading and Writing from an APB Slave
When writing to and reading from DesignWare APB slaves, you should consider the following:

● The size of the APB peripheral should always be set equal to the size of the APB data bus, if
possible.

● The APB bus has no concept of a transfer size or a byte lane, unlike the DW_ahb.

● The APB slave subsystem is little endian; the DW_apb performs the conversion from a big-endian
AHB to the little-endian APB.

● All APB slave programming registers are aligned on 32-bit boundaries, irrespective of the APB
bus size.

● The maximum APB_DATA_WIDTH is 32 bits. Registers larger than this occupies more than one
location in the memory map.

● The DW_apb does not return any ERROR, SPLIT, or RETRY responses; it always returns an
OKAY response to the AHB.

● For all bus widths:

❍ In the case of a read transaction, registers less than the full bus width returns zeros in the
unused upper bits.

❍ Writing to bit locations larger than the register width does not have any effect. Only the
pertinent bits are written to the register.

● The APB slaves do not need the full 32-bit address bus, paddr. The slaves include the lower bits
even though they are not actually used in a 32- or 16-bit system.

Reading From Unused Locations
Reading from an unused location or unused bits in a particular register always returns zeros. Unlike an
AHB slave interface, which would return an error, there is no error mechanism in an APB slave and,
therefore, in the DW_apb.

April 16, 2007 Synopsys, Inc. 165

DesignWare DW_apb_i2c Databook Integration Considerations

The following sections show the relationship between the register map and the read/write operations
for the three possible APB_DATA_WIDTH values: 8-, 16-, and 32-bit APB buses.

Figure 29: Read/Write Locations for Different APB Bus Data Widths

32-bit Bus System
For 32-bit bus systems, all programming registers can be read or written with one operation, as
illustrated in the previous figure.

Because all registers are on 32-bit boundaries, paddr[1:0] is not actually needed in the 32-bit bus case.
But these bits still exist in the configured code for usability purposes.

Note
If you write to an address location not on a 32-bit boundary, the bottom bits are
ignored/not used.

31 0715 APB Address
nn00

nn04

nn08
nn09Register 3 [15:8] Register 3 [7:0]

Register 2 [15:8] Register 2 [7:0]

Register 1 [7:0]

Register 3 [31:24]
Register 3 [23:16]

nn05

nn0A
nn0B

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:16] Register 3 [15:0]

Register 2 [15:0]

Register 1 [7:0]

nn0A

31 0715 APB Address
nn00

nn04

nn08Register 3 [31:0]

Register 2 [15:0]

Register 1 [7:0]

32-bit APB

16-bit APB

8-bit APB

166 Synopsys, Inc. April 16, 2007

Integration Considerations DesignWare DW_apb_i2c Databook

16-bit Bus System
For 16-bit bus systems, two scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 16 bits

In this case, the register can be read or written with one transaction. In the case of a read
transaction, registers less than 16 bits wide returns zeros in the un-used bits. Writing to bit
locations larger than the register width causes nothing to happen, i.e. only the pertinent bits are
written to the register.

2. The register to be written to or read from is >16 and <= 32 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to
read or write the register. The first transaction should read/write the lower two bytes (half-word)
and the second transaction the upper half-word.

Because the bus is reading a half-word at a time, paddr[0] is not actually needed in the 16-bit bus case.
But these bits still exist in the configured code for connectivity purposes.

Note
If you write to an address location not on a 16-bit boundary, the bottom bits are
ignored/not used.

8-bit Bus System
For 8-bit bus systems, three scenarios exist, as illustrated in the previous picture:

1. The register to be written to or read from is less than or equal to 8 bits

In this case, the register can be read or written with one transaction. In the case of a read
transaction, registers less than 8 bits wide returns zeros in the unused bits. Writing to bit locations
larger than the register width causes nothing to happen, that is, only the pertinent bits are written to
the register.

2. The register to be written to or read from is >8 and <=16 bits

In this case, two AHB transactions are required, which in turn creates two APB transactions, to
read or write the register. The first transaction should read/write the lower byte and the second
transaction the upper byte.

3. The register to be written to or read from is >16 and <=32 bits

In this case, four AHB transactions are required, which in turn creates four APB transactions, to
read or write the register. The first transaction should read/write the lower byte and the second
transaction the second byte, and so on.

Because the bus is reading a byte at a time, all lower bits of paddr are decoded in the 8-bit bus case.

April 16, 2007 Synopsys, Inc. 167

DesignWare DW_apb_i2c Databook Integration Considerations

Write Timing Operation
A timing diagram of an APB write transaction for an APB peripheral register (an earlier version of the
DW_apb_ictl) is shown in the following figure. Data, address, and control signals are aligned. The
APB frame lasts for two cycles when psel is high.

Figure 30: APB Write Transaction

A write can occur after the first phase with penable low, or after the second phase when penable is high.
The second phase is preferred and is used in all APB slave components. The timing diagram is shown
with the write occurring after the second phase. Whenever the address on paddr matches a
corresponding address from the memory map and provided psel, pwrite, and penable are high, then the
corresponding register write enable is generated.

A write from the AHB to the APB does not require the AHB system bus to stall until the transfer on the
APB has completed. A write to the APB can be followed by a read transaction from another AHB
peripheral (not the DW_apb).

The timing example is a 33-bit register and a 32-bit APB data bus. To write this, 5 byte enables would
be generated internally. The example shows writing to the first 32 bits with one write transaction.

Register

pclk

psel

penable

pwrite

paddr[7:2]

pwdata[31:0]

irq_inten[32:0]

wen_inten[4:0] 0x0f

0x100000000 0x100001234

0x00001234

IrqIntEnL

168 Synopsys, Inc. April 16, 2007

Integration Considerations DesignWare DW_apb_i2c Databook

Read Timing Operation
A timing diagram of an APB read transaction for an APB peripheral (an earlier version of the
DW_apb_ictl) is shown in the following figure. The APB frame lasts for two cycles, when psel is high.

Figure 31: APB Read Transaction

Whenever the address on paddr matches the corresponding address from the memory map—psel is
high, pwrite and penable are low—then the corresponding read enable is generated. The read data is
registered within the peripheral before passing back to the master through the DW_apb and DW_ahb.

The qualification of the read-back data with hready from the bridge is shown in the timing diagram, but
this does not form part of the APB interface. The read happens in the first APB cycle and is passed
straight back to the AHB master in the same cycles as it passes through the bridge. By returning the
data immediately to the AHB bus, the bridge can release control of the AHB data bus faster. This is
important for systems where the APB clock is slower than the AHB clock.

Once a read transaction is started, it is completed and the AHB bus is held until the data is returned
from the slave

Note
If a read enable is not active, then the previously read data is maintained on the read-back
data bus.

Accessing Top-level Constraints
To get SDC constraints out of coreConsultant, you need to first complete the synthesis activity and then
use the “write_sdc” command to write out the results:

1. This cC command sets synthesis to write out scripts only, without running DC:

set_activity_parameter Synthesize ScriptsOnly 1

Register

pclk

psel

penable

pwrite

paddr[7:2]

prdata[31:0]

irq_inten[32:0]

ren_irq_inten[4:0]

0x100001234

0x1234

IrqIntEnL

0x1234hrdata[31:0]

hready

April 16, 2007 Synopsys, Inc. 169

DesignWare DW_apb_i2c Databook Integration Considerations

2. This cC command autocompletes the activity:

autocomplete_activity Synthesize

3. Finally, this cC command writes out SDC constraints:

write_sdc <filename>

170 Synopsys, Inc. April 16, 2007

Integration Considerations DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 171

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

A
Building and Verifying Your DW_apb_i2c

This chapter provides an overview of the step-by-step process you use to configure, synthesize, and
verify your DW_apb_i2c component using the Synopsys coreConsultant tool. You use coreConsultant
to create a workspace that is your working version of a subsystem, where you connect, configure,
simulate, and synthesize your implementation of the subsystem. You can create several workspaces to
experiment with different design alternatives. The topics are as follows:

● “Setting Up Your Environment”
● “Starting coreConsultant” on page 172
● “Checking Your Environment” on page 173
● “Configuring the DW_apb_i2c”
● “Synthesizing the DW_apb_i2c” on page 174
● “Verifying the DW_apb_i2c” on page 175

If you plan to include the DW_apb_i2c as part of a DesignWare AMBA subsystem, then you will want
to use the coreAssembler tool. This tool is a customized version of coreAssembler. For more
information about including DW_apb_i2c in a DesignWare AMBA subsystem, refer to Chapter 2,
“Building and Verifying a Subsystem” on page 17.

Setting Up Your Environment
DW_apb_i2c is included with a DesignWare Synthesizable Components for AMBA 2 release; it is
assumed that you have already downloaded and installed the release. However, to download and install
the latest versions of required tools, refer to the DesignWare AMBA Synthesizable Components
Installation Guide.

You also need to set up your environment correctly using specific environment variables, such as
DESIGNWARE_HOME, VERA_HOME, PATH, and SYNOPSYS. If you are not familiar with these
requirements and the necessary licenses, refer to “Setting up Your Environment” in the DesignWare
AMBA Synthesizable Components Installation Guide.

172 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

Starting coreConsultant
To invoke coreConsultant:

1. In a UNIX shell, navigate to a directory where you plan to locate your component workspace.

2. Invoke coreConsultant:

% coreConsultant

The welcome page is displayed, similar to the one below.

3. Click on the DW_apb_i2c link in the “Configuring and Using an IP block” section to create a new
workspace. After you have created a workspace, you can also continue working from the point you
left off by using the “Open” link to open it back up.

Activity
List pane

Console
pane

Command
Line pane

Activity View
pane

April 16, 2007 Synopsys, Inc. 173

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

In the resulting dialog box, specify the workspace name and workspace root directory, or use the
defaults – a workspace name is the name of a configuration of a core; the workspace root directory
is the directory in which the configuration is created. Click OK.

You may notice that you are already in the Specify Configuration activity under the Create RTL
category in the Activity List on the left, and that the Set Design Prefix activity is already enabled
in the list. It is not necessary for you to set the design prefix at this point of the learning phase. You
may use this feature in the future if you ever use multiple versions of a component in a design.

Checking Your Environment
Before you begin configuring your component, it is recommended that you check your environment to
make sure you have the latest tool versions installed and your environment variables set up correctly.

To check your environment, use the Help > Check Environment menu path.

An HTML report is displayed in a separate dialog. This report lists the specific tools and versions
installed in your environment. It also displays errors when a specific tool is not installed or if you are
using an older version than you need. You will also see an error if your $DESIGNWARE_HOME
environment variable has not been set up correctly.

Configuring the DW_apb_i2c
This section steps you through the tasks in the coreConsultant GUI that configure your core. Complete
information about the latest version of coreConsultant is available on the web in the coreConsultant
User Guide. To view documentation specific to your version of coreConsultant, choose the Help
pull-down menu from the coreConsultant GUI.

At any time during this process you can click on the Help tab for each activity to activate the
coreConsultant online help.

Note
Throughout the remaining steps in this chapter, it is best if you apply the default values so
that the directions and descriptions in the chapter will coincide with your display. After
you have used the DW_apb_i2c in coreConsultant, you can then go back through these
steps and change values in order to see how they affect the design.

1. Specify Configuration – The Specify Configuration activity is where you specify the basic
configuration of the DW_apb_i2c. If you have a Source license, you can choose to use
DesignWare Building Block IP (DWBB) components for optimal Synthesis QoR. Alternatively, if
you have an RTL source licence, you may use source code for DWBB components without a
DesignWare license. If you use RTL source and also have a DesignWare key, you can choose to
retain the DWBB parts.

Look through the basic parameters for each item. Click the Next button to view the other
configuration defaults. If you need help with any field in the activity pane, right-click on the field
name and then left-click on the What’s This box.

174 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

When the configuration setup is complete, the Report tab is displayed, which gives you all the
source files (in encrypted format if you have a DW license, and unencrypted if you have a source
license) and all the parameters that have been set for this particular configuration. Reports contain
useful information as you complete each step in the coreConsultant process. Familiarize yourself
with the report contents before going to the next step.

Synthesizing the DW_apb_i2c
The steps to generate a gate-level netlist for a component in coreConsultant are the similar when
running synthesis on a subsystem using coreAssembler. To see the procedures for performing
synthesis, refer to “Create Gate-Level Netlist” on page 30. For more information about running
synthesis in coreConsultant, refer to the coreConsultant User Guide.

Checking Synthesis Status and Results
To check synthesis status and results, click the Report tab for the synthesis options; coreConsultant
displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your synthesis results
● The name of the host on which the synthesis is running
● The process ID (Job Id) of the synthesis
● The status of the synthesis job (running or done)

The Results dialog also enables you to kill the synthesis (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Summary of log files
● Synthesis stages that completed
● Summary of stage results

This information indicates whether the synthesis executed successfully, and lists the DW_apb_i2c
transactions that occurred during the scenario(s). Thorough analysis of the scenario execution requires
detailed analysis of all synthesis log files and inspection of report summaries.

Synthesis Output Files
All the synthesis results and log files are created under the syn directory in your workspace. Two of the
files in the workspace/syn directory are:

● run.scr – Top-level synthesis script for DW_apb_i2c
● run.log – Synthesis log file

Your final netlist and report directories depend on the QoR effort that you chose for your synthesis
(default is medium):

● low – initial
● medium – incr1
● high – incr2

For information about deliverables that are generated after synthesis is performed, refer to “Database
Description” on page 183.

April 16, 2007 Synopsys, Inc. 175

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

Running Synthesis from Command Line
To run synthesis from the command line prompt for the files generated by coreConsultant, enter the
following command:

% run.scr

This script resides in your workspace/syn directory.

Other Synthesis Information
The following are the false paths and timing exceptions for the DW_apb_i2c.

● If clocks are asynchronous, then false paths exist from registers in pclk to ic_clk and vice versa.
● There are false paths defined from ic_rst_n, and from presetn.

Verifying the DW_apb_i2c
This section provides the steps you use to execute the testbench available for DW_apb_i2c verification.
Once the DW_apb_i2c has been configured and the verification environment has been set up,
simulations can be automatically run. In fact, both synthesis and simulation activities can be done in
parallel, so you do not have to wait for synthesis to complete in order to start a simulation.

DW_apb_i2c verification is detailed in the following sections:

● “Creating GTECH Simulation Models”
● “Verify the Simulation Model” on page 177

Note
For GTECH Simulations Only. Due to the configurable nature of the component, some
ports in the testbench may not be needed for your chosen configuration. Warnings about
undriven nets may appear. These warnings are to be expected, and you can ignore them.
The verification result files show if the verification ran successfully.

Creating GTECH Simulation Models
DesignWare AMBA Synthesizable Components (coreKit RTL) are delivered in encrypted format,
rather than source code, and some simulators cannot read the encrypted source files. In order for these
simulators to read the encrypted files, you must either perform a GTECH conversion or purchase a
source license from Synopsys.

Note
The Synopsys VCS simulator reads the encrypted files directly and does not require a
GTECH conversion. All other supported simulators require a GTECH simulation model.
You need a DesignWare license to complete the GTECH generation process. If you are a
source license customer, then you do not have to generate a GTECH simulation model,
even if you are using a non-VCS simulator.

Also, it is not possible to perform a GTECH simulation with DC FPGA.

1. Generate GTECH Model – To create a GTECH simulation model, click on the Generate GTECH
Model activity.

176 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

2. Look at the values for the parameters listed below.

3. Click Apply; coreConsultant invokes Design Compiler to perform a low-effort compile
(quickmap) of your custom configuration using the Synopsys technology-independent GTECH
library. After this activity has completed, an e-mail similar to the following is sent to the specified
user name (if you enabled that option):

Activity: GenerateGtechModel
Workspace: workspace_path
Design: DW_apb_i2c
Started: Wed Jul 24 16:19:48 BST 2002
Finished: Wed Jul 24 16:21:42 BST 2002
Status: Completed
Results: workspace_path/gtech/gtech.log

Your simulation model is contained in the DW_apb_i2c.v output file that is written to workspace/
gtech/qmap/db.

Table 13: Parameters for Generate GTECH Model

Field Name Description

Execution Options

Generate Scripts only? Values: Enable or Disable
Default Value: Disable
Description: Writes scripts that run the generation of the GTECH
simulation model, but they are not run when you click Apply. To run these
scripts, go to the gtech directory of the component workspace and run the
run.scr script.

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, via lsf, via grd,
or through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local. For
remote, specify the hostname. For lsf and grd, specify bsub or qsub
commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Synthesis Control

Ungroup Netlist after Compile Values: Enable or Disable
Default Value: Disable
Description: Ungroups the design to provide a non-hierarchical netlist

April 16, 2007 Synopsys, Inc. 177

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

Verify the Simulation Model
To verify DW_apb_i2c, use coreConsultant to complete the following steps:

1. (Optional) Formal Verification – You can run formal verification scripts using Synopsys’
Formality (fm_shell) to check two designs for functional equivalence. You can check the
gate-level design from a selected phase of a previously executed synthesis strategy against either
the RTL implementation of the design or the gate-level design from another stage of synthesis. To
run this, click Formal Verification under the Verify Component activity.

2. Setup and Run Simulations – Specify the simulation by completing the Setup and Run
Simulations activity:

a. In the VIP pane, click on the VMT and AMBA versions to see the available versions; leave
these in the default “latest” mode.

b. In the Select Simulator area, click on the Simulator view list item to view available simulators
(VCS is the default).

c. Specify an appropriate Verilog simulator from the drop-down menu.

For installation instructions and information about required tools and versions, refer to
“Setting up Your Environment” in the DesignWare AMBA Synthesizable Components
Installation Guide. For general information about the contents of the release, refer to the
DesignWare DW_apb_i2c Release Notes.

d. In the Simulator Setup area of the Simulator pane, look at the parameters for the simulator
setup as detailed in the following table.

Field Name Description

Root Directory of Cadence
Installation

The path to the top of the directory tree where the Cadence
NC-Verilog executable is found; coreConsultant automatically
detects this path. The NC-Verilog executables reside in the ./bin
subdirectory.

MTI Include Path The path to the include directory contained within your MTI
simulator installation area. A valid directory includes the file
veriuser.h.

Vera Install Area
($VERA_HOME)

Path to your Vera installation. This parameter defaults to the value
of your VERA_HOME environment variable. Changes to this value
are propagated as $VERA_HOME in any simulation run.

Vera .vro file cache directory Cache directory used by Vera to store .vro files. These files are
generated as part of building the testbench. Encrypted Vera source is
compiled and stored in the cache.

DW Foundation install area Path to your Synopsys/DW Foundation installation. This parameter
defaults to the value of your SYNOPSYS environment variable.
Any change to this value must be made from the Tool Installation
Areas coreConsultant dialog box.

178 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

e. In the Waves Setup area of the Simulator pane, look at the parameters for the waves setup as
detailed below.

Note
For the Generate Waves File setting, enable the check box so that the simulation will
create a file that you can use later for debugging the simulation, if you want to do so.

f. Choose the View list choice.

g. In the View Selection area of the View pane, look at the choice of views of the design you can
simulate from the drop-down list:

• RTL – requires a source license or Synopsys VCS

• GTECH – requires that you have completed the Generate GTECH Model activity (see
page 175) only if you are using a non-VCS simulator and do not have a source license.

h. Choose the Execution Options list choice to set the following options:

C Compiler for (Vera PLI) Values: gcc or cc
Default Value: gcc
Description: Invokes the specific C compiler to create a Vera PLI
for your chosen non-VCS simulator. Choose cc if you have the
platform native ANSI C compiler installed. Choose gcc if you have
the GNU C compiler installed.

Field Name Description

Generates waves file Values: Enable or Disabled
Default Value: Disable
Description: Indicates whether a wave file should be created for
debugging with a wave file browser after simulation ends. Uses VPD file
format for VCS and VCD format for the other supported simulators.

Depth of waves to be
recorded

Description: Enter the depth of the signal hierarchy for which to record
waves in the dump file. A depth of 0 indicates all signals in the hierarchy
are included in the wave file.

Field Name Description

Do Not Launch
Simulation

Values: Enable or Disable
Default Value: Disable
Description: Determines whether to execute the simulation or just generate
the simulation run script. If enabled, coreConsultant generates, but does not
execute, the simulation run script. You can execute the script at a later time by
invoking the run script (workspace/sim/run.scr) directly from the UNIX
command line or by repeating the Verification activity with Do Not Launch
Simulation unselected.

Field Name Description

April 16, 2007 Synopsys, Inc. 179

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

i. Select Testbench and look at the options described below:

j. Click Apply to run the simulation.

When you click Apply, coreConsultant performs the following actions:

Run Style Values: local, lsf, grd, or remote
Default Value: local
Description: Describes how to run the command: locally, via lsf, via grd, or
through the remote shell.

Run Style Options Values: user-defined
Default Value: none
Description: Additional options for the run style options except local. For
remote, specify the hostname. For lsf and grd, specify bsub or qsub
commands.

Send e-mail Values: current user’s name
Description: E-mail is sent when the command script completes or is
terminated.

Field Name Description

Let each Test decide
default Timeout Period

Values: Enable or Disable
Default Value: Enable
Description: Allows the test to default the timeout period value.
NOTE: It it highly recommended that you leave this option enabled if
you want the simulation to complete normally.

Number of clocks before
simulation timeout

Minimum Value: 1
Default Value: 999999
Dependencies: This setting is activated when the “Let each Test decide
default Timeout Period” is disabled.
Description: Enabled if default timeout period not enabled. Enter the
number of clock periods of simulation that, if passed, cause the
simulation to fail. This is used to avoid runaway simulations or to debug
truncated simulation runs.
NOTE: If you are experiencing a timeout during the simulation for your
specific configuration, you may need to increase this value.

APB Clock Ratio Values: 1-8 (currently only 1 is allowed)
Default Value: 1
Description: Specifies the ratio of the APB clock (also known as pclk or
the system clock).

Run test_i2c This is automatically set and runs the specific tests to verify the
DW_apb_i2c.

Field Name Description

180 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

❍ Sets up the DW_apb_i2c verification environment to match your selected DW_apb_i2c
configuration.

❍ Generates the simulation run script (run.scr) and writes it to your workspace/sim directory.

❍ Invokes the simulation run script, unless you enabled the Do Not Launch Simulation option.

The simulation run script, in turn, performs the following actions:

❍ Links the generated command files, and recompiles the testbench.

❍ Invokes your simulator to simulate the specified scenarios.

❍ Writes the simulation output files to your workspace/sim/test_* directory.

❍ If an e-mail address is specified, sends the simulation completion information to that e-mail
address when the simulation is complete.

For an overview of the related tests, refer to “Verification” on page 157.

Checking Simulation Status and Results
To check simulation status and results, click the Report tab for either the GTECH models or for the
simulation options; coreConsultant displays a dialog that indicates:

● Your selected Run Style (local, lsf, grd, or remote)
● The full path to the HTML file that contains your simulation results
● The name of the host on which the simulation is running
● The process ID (Job Id) of the simulation
● The status of the simulation job (running or done)

If you selected the “LSF/GRD” option for the Run Style, then the status of the simulation jobs (running
or complete) is incorrect. Once all the simulation jobs are submitted to the LSF/GRD queue, the status
would indicate “complete.” You should use “bjobs/qstatus” to see whether all the jobs are completed.

The Results dialog also enables you to kill the simulation (Kill Job) and to refresh the status display in
the Results dialog (Refresh Status). The Results information includes:

● Vera compile execution messages
● Simulation execution messages
● DW_apb_i2c bus transactions

This information indicates whether the simulation executed successfully, and lists the DW_apb_i2c
transactions that occurred during the scenario(s).

Thorough analysis of the scenario execution requires detailed analysis of all simulation output files and
inspection of simulation waveforms with a waveform viewer.

Creating a Batch Script
It sometimes helps to have a batch file that contains information about the workspace, parameters,
attributes, and so on. You can then review these by looking at the file in an ASCII editor. To do this,
choose the File > Write Batch Script menu item and enter a name for the file. Then look at the
contents to familiarize yourself with the information that you can get from this file. You can use the
batch script to reproduce the workspace.

April 16, 2007 Synopsys, Inc. 181

DesignWare DW_apb_i2c Databook Appendix A: Building and Verifying Your DW_apb_i2c

Applying Default Verification Attributes
To reset all DW_apb_i2c verification attributes to their default values, use the Default button in the
Setup and Run Simulation activity under the Verification tab.

To examine default attribute values without resetting the attribute values in your current workspace,
create a new workspace; the new workspace has all the default attribute values. Alternatively, use the
Default button to reset the values, and then close your current workspace without saving it.

If you are interested, you might want to go back through the process in this chapter and change
parameters in order to see how the results vary to the defaults.

182 Synopsys, Inc. April 16, 2007

Appendix A: Building and Verifying Your DW_apb_i2c DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 183

DesignWare DW_apb_i2c Databook Appendix B: Database Description

B
Database Description

This appendix lists the deliverables and other reference files that are generated from the coreConsultant
flow.

This appendix includes the following sections:

● “Design/HDL Files” on page 184
● “Register Map Files” on page 185
● “Synthesis Files” on page 186
● “Verification Reference Files” on page 186

184 Synopsys, Inc. April 16, 2007

Appendix B: Database Description DesignWare DW_apb_i2c Databook

Design/HDL Files
The following sections describe the design and HDL files that are produced by coreConsultant when
configuring and verifying a DesignWare AMBA component.

RTL-Level Files
The following table describes the RTL files that are generated by the Create RTL activity of the
coreConsultant GUI. They are encrypted except where otherwise noted.

Note
Any Synopsys synthesis tool or simulator can read encrypted RTL files.

Table 14: RTL-Level Files

Files Encrypted? Purpose

./src/component_cc_constants.v No Includes definitions and values of all configuration
parameters that you have specified for the component.

./src/component.v No Top-level HDL file.
When you include the component in your simulation, you
must include the DesignWare libraries by using the
following options in your simulator invocation:
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver
For an example of this process, refer to the DW_AMBA
QuickStart SingleLayer Example Guide.
Note: If you could not open the QuickStart documentation,
it means that you have not downloaded the QuickStart
examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation
Guide.

./src/component_submodule.v Yes Sub-modules of component

./src/component_constants.v No Includes the constants used internally in the design.

./src/component.lst No Lists the order in which the RTL files should be read into
tools, such as simulators or dc_shell. For example, use the
following option to read the design into VCS:
vcs -f component.lst

./src/*.update Yes Ignore these files. Used for VHDL generation

./export/component_inst.v No Instantiation of configured component for use in design

April 16, 2007 Synopsys, Inc. 185

DesignWare DW_apb_i2c Databook Appendix B: Database Description

Simulation Model Files
The following table includes the simulation model files generated for the component during the
Generate GTECH Simulation activity in coreConsultant. These files are needed when you are using a
non-Synopsys simulator (when you can not use the encrypted RTL).

Register Map Files
These files only pertain to DW_ahb and DW_apb slaves, basically components that have a
programming interface. The DesignWare AMBA components that do not have register map files are
the DW_apb, DW_ahb_icm, and DW_ahb_h2h components. These files include address definitions
(memory map) for the component. The following table includes a description of the C and Verilog
header files generated for components with programming interfaces.

Table 15: Simulation Model Files

Files Encrypted? Purpose

./gtech/final/db/component.v No Simulation model of the component for use with
non-Synopsys simulators. A technology-independent,
gate-level netlist. VHDL and Verilog versions are generated.
When you use this simulation model in your simulation, you
must include the DesignWare libraries by using the following
options in your simulator invocation:
-y ${SYNOPSYS}/packages/gtech/src_ver
-y ${SYNOPSYS}/dw/sim_ver
For an example of this process, refer to the DW_AMBA
QuickStart SingleLayer Example Guide.
Note: If you could not open the QuickStart documentation, it
means that you have not downloaded the QuickStart
examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation
Guide.

Table 16: Header Files

Files Encrypted? Purpose

./c_headers/component_defs.h No For use when programming the component in a C
environment.

./verilog_headers/component_defs.v No For use when programming the component in a Verilog
environment.

186 Synopsys, Inc. April 16, 2007

Appendix B: Database Description DesignWare DW_apb_i2c Databook

Synthesis Files
The following table includes the files that are generated after the Create Gate-Level Netlist activity in
coreConsultant is performed on a component.

Verification Reference Files
The files described in the following table include information pertaining to the component’s operation
so that you can verify installation and configuration of the component has been successful. These files
are not for re-use during system-level verification.

For more information about performing verification on your component, see the chapter titled
Verification in this databook.

Table 17: Synthesis Files

Files Encrypted? Purpose

./syn/auxScripts No Auxiliary files for synthesis.

./syn/final/db/component.db Binary format Synopsys .db files (gate level) that can be read into dc_shell for
further synthesis, if desired.

./syn/final/db/component.v No Gate-level netlist that is mapped to technology libraries that you
specify.

./syn/constrain/script/*.* No Constraint files for the components.

./syn/final/report/*.* No Synthesis result files.

Table 18: Verification Reference Files

Files Encrypted? Purpose

./sim/runtest No Perl script that runs the coreConsultant Verify Component
activity from the command line.

./sim/runtest.log No The overall result of simulation, including pass/fail results.

./sim/test_testname/test.result No Pass/fail of individual test.

./sim/test_testname/test.log No Log file for individual test.

April 16, 2007 Synopsys, Inc. 187

DesignWare DW_apb_i2c Databook Appendix C: DesignWare QuickStart Designs

C
DesignWare QuickStart Designs

The DesignWare AMBA Synthesizable Components environment provides many templates and
examples to help you be successful with your own design creation process. This section summarizes
these system design aids, and points you to more information about them.

QuickStart Example Designs
QuickStart examples are provided with the DesignWare Synthesizable Components and verification
models to help you learn about these products. The QuickStart examples show how to connect the
DesignWare AMBA Synthesizable Components to the DW_apb and DW_ahb bus IP, and how to set
up a verification environment. These are simulation-only subsystems to view waveforms, and not for
use in synthesis. Each example design includes the following information:

● Block diagram of subsystem design, showing connections and ports
● Purpose of the example, and features included
● Example directory structure
● Important configuration and parameter information
● Overview of the testbench and tests that are provided
● Instructions on how to quickly perform a simulation run

For more information about QuickStart examples, refer to the DesignWare AMBA
QuickStart_SingleLayer Guide and the DesignWare AMBA QuickStart_MultiLayer Guide.

Note
If you could not open the QuickStart documentation, it means that you have not
downloaded the QuickStart examples. For download instructions, please refer to the
DesignWare AMBA Synthesizable Components Installation Guide.

188 Synopsys, Inc. April 16, 2007

Appendix C: DesignWare QuickStart Designs DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 189

DesignWare DW_apb_i2c Databook Appendix D: DW_apb_i2c Application Notes

D
DW_apb_i2c Application Notes

The following are application notes for the DW_apb_i2c component.

● The tSDAH (SDA data hold time) detailed in the I2C-Bus Specification should be 300-900ns for
Fast Mode Devices. However, the SDA data hold time in the DW_apb_i2c component is one-
clock cycle based. This tSDAH may be insufficient for some slave devices. A few slave devices
may not receive the valid address due to the lack of SDA hold time and will not acknowledge even
if the address is valid. If the SDA data hold time is insufficient, an error may occur.

Workaround: If a device needs more SDA data hold time than one clock cycle, an RC delay
circuit is needed on the SDA line as illustrated in the following figure:

For example, R=K and C=200pF.

SDA from Master SDA to device

http://www.semiconductors.philips.com/buses/i2c/licensing/index.html

190 Synopsys, Inc. April 16, 2007

Appendix D: DW_apb_i2c Application Notes DesignWare DW_apb_i2c Databook

April 16, 2007 Synopsys, Inc. 191

DesignWare DW_apb_i2c Databook Appendix E: Glossary

E
Glossary

active command queue Command queue from which a model is currently taking commands; see also
command queue.

activity A set of functions in coreConsultant that step you through configuration,
verification, and synthesis of a selected core.

AHB Advanced High-performance Bus — high-performance system backbone bus.
AHB supports the efficient connection of processors, on-chip memories and
off-chip external memory interfaces (ARM Limited specification).

AMBA Advanced Microcontroller Bus Architecture — a trademarked name by ARM
Limited that defines an on-chip communication standard for high speed
microcontrollers.

APB Advanced Peripheral Bus — optimized for minimal power consumption and
reduced interface complexity to support peripheral functions (ARM Limited
specification).

APB bridge DW_apb submodule that converts protocol between the AHB bus and APB
bus.

application design Overall chip-level design into which a subsystem or subsystems are integrated.

arbiter AMBA bus submodule that arbitrates bus activity between masters and slaves.

BFM Bus-Functional Model — A simulation model used for early hardware debug.
A BFM simulates the bus cycles of a device and models device pins, as well as
certain on-chip functions. See also Full-Functional Model.

big-endian Data format in which most significant byte comes first; normal order of bytes
in a word.

blocked command stream A command stream that is blocked due to a blocking command issued to that
stream; see also command stream, blocking command, and non-blocking
command.

192 Synopsys, Inc. April 16, 2007

Appendix E: Glossary DesignWare DW_apb_i2c Databook

blocking command A command that prevents a testbench from advancing to next testbench
statement until this command executes in model. Blocking commands
typically return data to the testbench from the model.

bus bridge Logic that handles the interface and transactions between two bus standards,
such as AHB and APB. See APB bridge.

command channel Manages command streams. Models with multiple command channels execute
command streams independently of each other to provide full-duplex mode
function.

command stream The communication channel between the testbench and the model.

component A generic term that can refer to any synthesizable IP or verification IP in the
DesignWare Library. In the context of synthesizable IP, this is a configurable
block that can be instantiated as a single entity (VHDL) or module (Verilog) in
a design.

configuration The act of specifying parameters for a core prior to synthesis; can also be used
in the context of VIP.

configuration intent Range of values allowed for each parameter associated with a reusable core.

core Any configurable block of synthesizable IP that can be instantiated as a single
entity (VHDL) or module (Verilog) in a design. Core is the preferred term for
a big piece of IIP. Anything that requires coreConsultant for configuration, as
well as anything in the DesignWare Cores library, is a core.

core developer Person or company who creates or packages a reusable core. All the cores in
the DesignWare Library are developed by Synopsys.

core integrator Person who uses coreConsultant or coreAssembler to incorporate reusable
cores into a system-level design.

coreAssembler Synopsys product that enables automatic connection of a group of cores into a
subsystem. Generates RTL and gate-level views of the entire subsystem.

coreConsultant A Synopsys product that lets you configure a core and generate the design
views and synthesis views you need to integrate the core into your design. Can
also synthesize the core and run the unit-level testbench supplied with the core.

coreKit An unconfigured core and associated files, including the core itself, a specified
synthesis methodology, interfaces definitions, and optional items such as
verification environment files and core-specific documentation.

cycle command A command that executes and causes HDL simulation time to advance.

decoder Software or hardware subsystem that translates from and “encoded” format
back to standard format.

design context Aspects of a component or subsystem target environment that affect the
synthesis of the component or subsystem.

design creation The process of capturing a design as parameterized RTL.

Design View A simulation model for a core generated by coreConsultant.

April 16, 2007 Synopsys, Inc. 193

DesignWare DW_apb_i2c Databook Appendix E: Glossary

DesignWare AMBA
Synthesizable Components

The Synopsys name for the collection of AMBA-compliant coreKits and
verification models delivered with DesignWare and used with coreConsultant
or coreAssembler to quickly build DesignWare AMBA Synthesizable
Component designs.

DesignWare cores A specific collection of synthesizable cores that are licensed individually. For
more information, refer to www.synopsys.com/designware.

DesignWare Library A collection of synthesizable IP and verification IP components that is
authorized by a single DesignWare license. Products include SmartModels,
VMT model suites, DesignWare Memory Models, Building Block IP, and the
DesignWare AMBA Synthesizable Components.

dual role device Device having the capabilities of function and host (limited).

endian Ordering of bytes in a multi-byte word; see also little-endian and big-endian.

Full-Functional Mode A simulation model that describes the complete range of device behavior,
including code execution. See also BFM.

GPIO General Purpose Input Output.

GTECH A generic technology view used for RTL simulation of encrypted source code
by non-Synopsys simulators.

hard IP Non-synthesizable implementation IP.

HDL Hardware Description Language – examples include Verilog and VHDL.

IIP Implementation Intellectual Property — A generic term for synthesizable
HDL and non-synthesizable “hard” IP in all of its forms (coreKit, component,
core, MacroCell, and so on).

implementation view The RTL for a core. You can simulate, synthesize, and implement this view of
a core in a real chip.

instantiate The act of placing a core or model into a design.

interface Set of ports and parameters that defines a connection point to a component.

IP Intellectual property — A term that encompasses simulation models and
synthesizable blocks of HDL code.

little-endian Data format in which the least-significant byte comes first.

MacroCell Bigger IP blocks (6811, 8051, memory controller) available in the
DesignWare Library and delivered with coreConsultant.

master Device or model that initiates and controls another device or peripheral.

model A Verification IP component or a Design View of a core.

monitor A device or model that gathers performance statistics of a system.

non-blocking command A testbench command that advances to the next testbench statement without
waiting for the command to complete.

194 Synopsys, Inc. April 16, 2007

Appendix E: Glossary DesignWare DW_apb_i2c Databook

peripheral Generally refers to a small core that has a bus connection, specifically an APB
interface.

RTL Register Transfer Level. A higher level of abstraction that implies a certain
gate-level structure. Synthesis of RTL code yields a gate-level design.

SDRAM Synchronous Dynamic Random Access Memory; high-speed DRAM adds a
separate clock signal to control signals.

SDRAM controller A memory controller with specific connections for SDRAMs.

slave Device or model that is controlled by and responds to a master.

SoC System on a chip.

soft IP Any implementation IP that is configurable. Generally referred to as
synthesizable IP.

static controller Memory controller with specific connections for Static memories such as
asynchronous SRAMs, Flash memory, and ROMs.

subsystem In relation to coreAssembler, highest level of RTL that is automatically
generated.

synthesis intent Attributes that a core developer applies to a top-level design, ports, and core.

synthesizable IP A type of Implementation IP that can be mapped to a target technology
through synthesis. Sometimes referred to as Soft IP.

technology-independent Design that allows the technology (that is, the library that implements the gate
and via widths for gates) to be specified later during synthesis.

Testsuite Regression
Environment (TRE)

A collection of files for stand-alone verification of the configured component.
The files, tests, and functionality vary from component to component.

VIP Verification Intellectual Property — A generic term for a simulation model in
any form, including a Design View.

workspace A network location that contains a personal copy of a component or
subsystem. After you configure the component or subsystem (using
coreConsultant or coreAssembler), the workspace contains the configured
component/subsystem and generated views needed for integration of the
component/subsystem at the top level.

wrap, wrapper Code, usually VHDL or Verilog, that surrounds a design or model, allowing
easier interfacing. Usually requires an extra, sometimes automated, step to
create the wrapper.

zero-cycle command A command that executes without HDL simulation time advancing.

April 16, 2007 Synopsys, Inc. 195

DesignWare DW_apb_i2c Databook Index

Index

A
active command queue

definition 191
activity

definition 191
Adding component, to subsystem 22
AHB

definition 191
AMBA

definition 191
APB

definition 191
APB bridge

definition 191
APB Interface, and DW_apb_i2c 74
APB_DATA_WIDTH 76
application design

definition 191
arbiter

definition 191
Arbitration, of master 54
ATPG, with TetraMax 33

B
BFM

definition 191
big-endian

definition 191
Block diagram, of DW_apb_i2c 13
blocked command stream

definition 191
blocking command

definition 192
Building a subsystem, with coreAssembler 17
bus bridge

definition 192

C
C header files 185
Check tool environment, in coreAssembler 27
Clock synchronization 55
command channel

definition 192
command stream

definition 192

component
definition 192

Configuration
of IC_CLK frequency 63

configuration
definition 192

configuration intent
definition 192

Configuration parameters 76
Configuring components

in coreAssembler 28
core

definition 192
core developer

definition 192
core integrator

definition 192
coreAssembler

building a subsystem 17
configuring components 28
creating a batch script 44
creating gate-level netlist 30
creating subsystem RTL 29
definition 192
formal verification 40
overview of usage flow 18
starting 21
verifying a component 36

coreConsultant
definition 192
formal verification 177

coreKit
definition 192

Creating
batch script of workspace 44
gate-level netlist in coreAssembler 30

cycle command
definition 192

D
dc_shell 30
debug_addr 97
debug_addr_10bit 97
debug_data 97
debug_hs 98
debug_master_act 98
debug_mst_cstate 98

196 Synopsys, Inc. April 16, 2007

Index DesignWare DW_apb_i2c Databook

debug_p_gen 97
debug_rd 97
debug_s_gen 97
debug_slave_act 98
debug_slv_cstate 98
debug_wr 98
decoder

definition 192
design context

definition 192
design creation

definition 192
Design for Test, synthesis options 32
Design View

definition 192
DesignWare AMBA Synthesizable Components

definition 193
DesignWare cores

definition 193
DesignWare Library

definition 193
Disabling DW_apb_i2c

version 1.06a 62
DMA Controller

and DW_apb_i2c 65
DMA interface, signals 95
dma_rx_ack 96
dma_rx_req 96
dma_rx_single 96
dma_tx_ack 96
dma_tx_req 95
dma_tx_single 96
dual role device

definition 193
DW_apb

slaves
read timing operation 168
write timing operation 167

DW_apb_i2c
block diagram of 13
functional behavior 45
functional overview 13
I/O description 86
memory map of 100
operation modes 56
overview of 45
parameters 75, 76
programming of 99
protocols 50
registers 104

synthesis
output files 34, 174

synthesis of 174
testbench

overview of 160
overview of tests 157

Dynamic update of IC_TAR
initial configuration of master mode 60
or 10-bit addressing for master mode 61

E
endian

definition 193
Environment, licenses 14
Exporting, a subsystem 44

F
fm_shell 30
Formal verification

in coreAssembler 40
in coreConsultant 177

FPGA, running synthesis for 32
fpga_shell 30
Full-Functional Mode

definition 193
Functional behavior, of DW_apb_i2c 45
Functional overview, of DW_apb_i2c 13

G
Generating

subsystem RTL 29
GPIO

definition 193
GTECH

definition 193
GTECH, generation of 34, 175

H
hard IP

definition 193
HDL

definition 193

I
I/O connections 87
I/O signals, description of 86
IC_10BITADDR_MASTER 77, 78

April 16, 2007 Synopsys, Inc. 197

DesignWare DW_apb_i2c Databook Index

IC_ACK_GENERAL_CALL 148
ic_activity_intr(_n) 94
IC_ADD_ENCODED_PARAMS 80
IC_CAP_LOADING 82
ic_clk 89
IC_CLK frequency, configuration of 63
ic_clk_in_a 90
ic_clk_oe 90
IC_CLOCK_FREQ 81
IC_CLR_ACTIVITY 133
IC_CLR_GEN_CALL 134
IC_CLR_INTR 129
IC_CLR_RD_REQ 131
IC_CLR_RX_DONE 132
IC_CLR_RX_OVER 130
IC_CLR_RX_UNDER 130
IC_CLR_START_DET 134
IC_CLR_STOP_DET 133
IC_CLR_TX_ABRT 132
IC_CLR_TX_OVER 131
IC_CON 104
ic_current_src_en 91
IC_DATA_CMD 112
ic_data_in_a 90
ic_data_oe 90
IC_DEFAULT_SLAVE_ADDR 76, 77
IC_DMA_CR 146
IC_DMA_RDLR 147
IC_DMA_TDLR 147
ic_en 90
IC_ENABLE 136
IC_ENABLE_STATUS 149
IC_FS_SCL_HCNT 116
IC_FS_SCL_HIGH_COUNT 82
IC_FS_SCL_LCNT 118
IC_FS_SCL_LOW_COUNT 82
ic_gen_call_intr(_n) 95
IC_HC_COUNT_VALUES 80
IC_HS_MADDR 111
IC_HS_MASTER_CODE 77
IC_HS_SCL_HCNT 120
IC_HS_SCL_HIGH_COUNT 83
IC_HS_SCL_LCNT 122
IC_HS_SCL_LOW_COUNT 77, 83
ic_intr(_n) 91
IC_INTR_IO 79
IC_INTR_MASK 125
IC_INTR_POL 80
IC_INTR_STAT 124

IC_MASTER_MODE 77
IC_MAX_SPEED_MODE 76
IC_RAW_INTR_STAT 126
ic_rd_req_intr(_n) 93
IC_RESTART_EN 79
ic_rst_n 89
IC_RX_BUFFER_DEPTH 78
ic_rx_done_intr(_n) 93
ic_rx_over_intr(_n) 91
IC_RX_TL 78, 128
ic_rx_under_intr(_n) 92
IC_RXFLR 140
IC_SAR 110
IC_SDA_SETUP 148
IC_SLV_DATA_NACK_ONLY 145
IC_SS_CDNT 115
IC_SS_HCNT 113
IC_SS_SCL_HIGH_COUNT 81
IC_SS_SCL_LOW_COUNT 82
ic_start_det_intr(_n) 95
IC_STATUS 137
ic_stop_det_intr(_n) 94
IC_TAR 108
ic_tx_abrt_intr(_n) 92
IC_TX_ABRT_SOURCE 141
IC_TX_BUFFER_DEPTH 78
ic_tx_ecmply_intr(_n) 94
ic_tx_over_intr(_n) 92
IC_TX_TL 78, 129
IC_TXFLR 139
IC_USE_COUNTS 80
IIP

definition 193
implementation view

definition 193
instantiate

definition 193
interface

definition 193
Interfaces

APB 74
DMA Controller 65

IP
definition 193

L
Licenses 14
little-endian

definition 193

198 Synopsys, Inc. April 16, 2007

Index DesignWare DW_apb_i2c Databook

M
MacroCell

definition 193
master

definition 193
Master arbitration 54
Master mode 60
Memory map, of DW_apb_i2c 100
model

definition 193
monitor

definition 193

N
non-blocking command

definition 193

O
Operation modes 56
Output files

GTECH 185
header files 185
register map 185
RTL-level 184
Simulation model 185
synthesis 186
verification 186

P
paddr 89
Parameters

description of 76
pclk 88
penable 88
peripheral

definition 194
prdata 89
presetn 88
Programming DW_apb_i2c

memory map 99
registers 104

Protocols, of I2C 50
psel 88
psyn_shell 30
pt_shell 30
pwdata 89
pwrite 89

R
Reading, from unused locations 164
Register

IC_HS_MADDR 111
Registers

Clear ACTIVITY Interrupt 133
Clear Combined and Individual Interrupts 129
Clear GEN_CALL Interrupt 134
Clear RD_REQ Interrupt 131
Clear RX_DONE Interrupt 132
Clear RX_OVER Interrupt 130
Clear RX_UNDER Interrupt 130
Clear START_DET Interrupt 134
Clear STOP_DET Interrupt 133
Clear TX_ABRT Interrupt 132
Clear TX_OVER Interrupt 131
Control 104
DMA Control 146
DMA Transmit Data Level 147
Enable Status 149
Fast Speed I2C Clock SCL High Count 116
Fast Speed I2C Clock SCL Low Count 118
Generate Slave Data NACK 145
High Speed I2C Clock SCL High Count 120
High Speed I2C Clock SCL Low Count 122
HS Master Mode Code Address 111
I2C Enable 136
I2C Receive Data Level 147
IC_ACK_GENERAL_CALL 148
IC_CLR_ACTIVITY 133
IC_CLR_GEN_CALL 134
IC_CLR_INTR 129
IC_CLR_RD_REQ 131
IC_CLR_RX_DONE 132
IC_CLR_RX_OVER 130
IC_CLR_RX_UNDER 130
IC_CLR_START_DET 134
IC_CLR_STOP_DET 133
IC_CLR_TX_ABRT 132
IC_CLR_TX_OVER 131
IC_CON 104
IC_DATA_CMD 112
IC_DMA_CR 146
IC_DMA_RDLR 147
IC_DMA_TDLR 147
IC_ENABLE 136
IC_ENABLE_STATUS 149
IC_FS_SCL_HCNT 116
IC_FS_SCL_LCNT 118
IC_HS_SCL_HCNT 120
IC_HS_SCL_LCNT 122
IC_INTR_MASK 125

April 16, 2007 Synopsys, Inc. 199

DesignWare DW_apb_i2c Databook Index

IC_INTR_STAT 124
IC_RAW_INTR_STAT 126
IC_RX_TL 128
IC_RXFLR 140
IC_SAR 110
IC_SDA_SETUP 148
IC_SLV_DATA_NACK_ONLY 145
IC_SS_HCNT 113
IC_SS_LCNT 115
IC_STATUS 137
IC_TAR 108
IC_TX_ABRT_SOURCE 141
IC_TX_TL 129
IC_TXFLR 139
Interrupt Mask 125
Interrupt Status 126
of DW_apb_i2c 104
Raw Interrupt Status 124
Receive Buffer Threshold 128
Rx/Tx Data buffer and Command 112
SDA Setup 148
Slave Address 110
Standard Speed I2C Clock SCL High Count 113
Standard Speed I2C Clock SCL Low Count 115
Target Address 108
Transmit Buffer Threshold 129

RTL
definition 194

run.scr 34, 174

S
SDRAM

definition 194
SDRAM controller

definition 194
Signals, description of 86
Simulation

generating GTECH models 34, 175
of a component 36
of a subsystem 40
of DW_apb_i2c 160
results 39, 43, 180
status 39, 43, 180

slave
definition 194

Slave mode 56
SoC

definition 194
SoC Platform

AHB contained in 11
APB, contained in 11
defined 11

soft IP
definition 194

SSI_HAS_DMA 79
Starting

coreAssembler 21
static controller

definition 194
subsystem

definition 194
Synthesis

of DW_apb_i2c 174
output files 34, 174
results 34, 174
running from command line 175
target technology, specifying 31, 173

synthesis intent
definition 194

synthesizable IP
definition 194

Synthesizing subsystem 30

T
Target technology, specifying 31, 173
technology-independent

definition 194
Test vectors, generating 33
test_DW_apb_i2c.v 160
Testsuite Regression Environment (TRE)

definition 194
Timing

read operation of DW_apb slave 168
write operation of DW_apb slave 167

TRE
definition 194

U
USE_FOUNDATION 76, 79

V
Vera, overview of tests 157
Verification

and Vera tests 157
generating GTECH models 34, 175
of a component 36
of a subsystem 40
of DW_apb_i2c 160

Verilog header files 185
VIP

definition 194

200 Synopsys, Inc. April 16, 2007

Index DesignWare DW_apb_i2c Databook

W
workspace

definition 194
wrap

definition 194
wrapper

definition 194

Z
zero-cycle command

definition 194

	Documentation Overview
	DW_apb_i2c Release Notes
	Contents
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions
	Table 1: Documentation Conventions

	Revision History
	Table 2: Databook Revision History

	Getting Help
	Additional Information

	Comments?

	1 Product Overview
	DesignWare AMBA System Overview
	DesignWare AMBA System Block Diagram
	Figure 1: Example of DW_apb_i2c in a Complete System

	General product Description
	DW_apb_i2c Block Diagram
	Figure 2: Block Diagram of DW_apb_i2c

	Features
	Standards Compliance
	Verification Environment Overview
	Licenses
	Where To Go From Here
	Table 3: Tool Comparison

	2 Building and Verifying a Subsystem
	Setting up Your Environment
	Overview of the Configuration and Integration Process
	Figure 3: coreAssembler Usage Flow
	Table 4: coreAssembler Workspace Directory Contents
	Table 5: coreAssembler Testbench Workspace Directory Contents

	Start coreAssembler
	Add DW_apb_i2c to the Subsystem
	Figure 4: DW_apb_i2c in Simple Subsystem

	Check Your Environment
	Configure DW_apb_i2c
	Complete Signal Connections
	Generate Subsystem RTL
	Create Gate-Level Netlist
	Checking Synthesis Status and Results
	Synthesis Output Files
	Running Synthesis from Command Line

	Create Component GTECH Simulation Model
	Verify Component
	Checking Simulation Status and Results
	Applying Default Verification Attributes

	Verify the Subsystem
	Formal Verification
	Create Testbench
	Table 6: Create Testbench Options

	Checking Subsystem Verification Status and Results

	Create a Batch Script
	Export the Subsystem

	3 Functional Description
	Overview
	Figure 5: DW_apb_i2c Block Diagram

	I2C Terminology
	I2C Bus Terms
	Figure 6: Master/Slave and Transmitter/Receiver Relationships

	Bus Transfer Terms

	I2C Behavior
	Figure 7: Data transfer on the I2C Bus

	I2C Protocols
	START and STOP Conditions
	Figure 8: START and STOP Condition

	Addressing Slave Protocol
	Figure 9: 7-bit Address Format
	Figure 10: 10-bit Address Format
	Table 7: I2C Definition of Bits in First Byte

	Transmitting and Receiving Protocol
	Figure 11: Master-Transmitter Protocol
	Figure 12: Master-Receiver Protocol

	START BYTE Transfer Protocol
	Figure 13: START BYTE Transfer

	Multiple Master Arbitration
	Figure 14: Multiple Master Arbitration

	Clock Synchronization
	Figure 15: Multi-Master Clock Synchronization

	Operation Modes
	Slave Mode Operation
	Master Mode Operation
	Disabling DW_apb_i2c

	IC_CLK Frequency Configuration
	DMA Controller Interface
	Enabling the DMA Controller Interface
	Overview of Operation
	Figure 16: Breakdown of DMA Transfer into Burst Transactions
	Figure 17: Breakdown of DMA Transfer into Single and Burst Transactions

	Transmit Watermark Level and Transmit FIFO Underflow
	Choosing the Transmit Watermark Level
	Figure 18: Case 1 Watermark Levels
	Figure 19: Case 2 Watermark Levels

	Selecting DEST_MSIZE and Transmit FIFO Overflow
	Receive Watermark Level and Receive FIFO Overflow
	Choosing the Receive Watermark level
	Selecting SRC_MSIZE and Receive FIFO Underflow
	Figure 20: I2C Receive FIFO

	Handshaking Interface Operation
	Figure 21: Burst Transaction - pclk = hclk
	Figure 22: Back-to-Back Burst Transactions - hclk = 2*pclk
	Figure 23: Single Transaction
	Figure 24: Burst Transaction + 3 Back-to-Back Singles - hclk = 2*pclk

	APB Interface

	4 Parameters
	Parameter Descriptions
	Configuration Parameters
	Table 8: Top-Level Parameters
	Table 9: Derived Constants

	5 Signals
	DW_apb_i2c Interface Diagram
	Figure 25: DW_apb_i2c Interface Diagram

	I/O Connections
	Figure 26: I/O Connection to I2C Interface

	DW_apb_i2c Signal Descriptions
	Table 10: DW_apb_i2c Signal Description

	6 Registers
	Register Memory Map
	Table 11: Memory Map of DW_apb_i2c

	Registers and Field Descriptions
	Operation of the Interrupt Registers
	Table 12: Setting and Clearing of Interrupt Bits
	Figure 27: Interrupt Scheme

	7 Programming the DW_apb_i2c
	Software Registers
	Software Drivers

	8 Verification
	Overview of Vera Tests
	APB Slave Interface
	DW_apb_i2c Master Operation
	DW_apb_i2c Slave Operation
	DW_apb_i2c Interrupts
	DMA Handshaking Interface
	DW_apb_i2c Dynamic IC_TAR and IC_10BITADDR_MASTER Update
	Generate NACK as a Slave-Receiver
	SCL Held Low for Duration Specified in IC_SDA_SETUP
	Generate ACK/NACK for General Call

	Overview of DW_apb_i2c Testbench
	Figure 28: DW_apb_i2c Testbench

	9 Integration Considerations
	Digital/Analog Domain Functional Partitioning
	Reading and Writing from an APB Slave
	Reading From Unused Locations
	Figure 29: Read/Write Locations for Different APB Bus Data Widths

	32-bit Bus System
	16-bit Bus System
	8-bit Bus System

	Write Timing Operation
	Figure 30: APB Write Transaction

	Read Timing Operation
	Figure 31: APB Read Transaction

	Accessing Top-level Constraints

	A Building and Verifying Your DW_apb_i2c
	Setting Up Your Environment
	Starting coreConsultant
	Checking Your Environment
	Configuring the DW_apb_i2c
	Synthesizing the DW_apb_i2c
	Checking Synthesis Status and Results
	Synthesis Output Files
	Running Synthesis from Command Line
	Other Synthesis Information

	Verifying the DW_apb_i2c
	Creating GTECH Simulation Models
	Table 13: Parameters for Generate GTECH Model

	Verify the Simulation Model
	Checking Simulation Status and Results
	Creating a Batch Script
	Applying Default Verification Attributes

	B Database Description
	Design/HDL Files
	RTL-Level Files
	Table 14: RTL-Level Files

	Simulation Model Files
	Table 15: Simulation Model Files

	Register Map Files
	Table 16: Header Files

	Synthesis Files
	Table 17: Synthesis Files

	Verification Reference Files
	Table 18: Verification Reference Files

	C DesignWare QuickStart Designs
	QuickStart Example Designs

	D DW_apb_i2c Application Notes
	E Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

